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ABSTRACT

In this thesis, we study the problem of network implementable controllers for network

distributed systems. Network distributed control problem gains importance by the increase

in networked system applications in many areas which require network distributed control

and estimation. By network implementable controller, we mean controller can be imple-

mented over the given network with the predefined/given delay and sparsity constraints.

We define all stabilizing controllers by re-interpreting plant and controller. We define

a congruent stable plant of the original plant which is not necessarily stable, such that

the controller of the congruent plant is linearly function of the original plant’s controller.

When we put structural constraints on all stabilizing controllers of the stable congruent

plant, these controllers embody controllers of the main plant. Therefore, all stabilizing

controllers of the original plant are defined as all stabilizing controllers of the congruent

plant with structural constraints. In the view of this problem, we obtain all stabilizing

controller parametrization of the original plant wherein equality constraints are introduced

on the Youla parameter. Moreover, we define a necessary and sufficient problem to attain

a controller in the form of norm minimization problem benefiting formulated all stabilizing

controller parametrization and provide a solution method for it.

Moreover, we introduce a doubly-coprime factorization of blkdiag(Inx ,K) which allows

us to have a network implementable state-space realization of a structured controller, K,

which inherits sparsity and delay constraints introduced by the given network in z-domain,

of a network distributed system with order nx. By network implementable state-space re-

alization, we mean state-space realization can be expressed as a strictly causal interaction

of some sub-systems over the given network. We call such structured controllers as network

realizable controller, i.e. controllers whose network implementable state-space realization
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can be obtained. Moreover, using the formulated controller problem, we provide a network

realizable controller problem by introducing sparsity and delay constraints on the Youla

parameter. Introduced network realizable controller problem is in the form of norm mini-

mization problem with structural constraints introduced on Youla parameter. Afterwards,

we obtain its equivalent unconstrained network realizable controller problem which allows

us to attain a solution in infinite dimensional space benefiting existing solution methods of

H2 problem.

Moreover, we define a model matching problem and present an optimal network realiz-

able controller problem. The formulated optimal network realizable controller problem is a

constrained problem. To obtain an unconstrained problem formulation, we define a relax-

ation by a Lagrange multiplier and benefit from the vectorization method introduced in the

literature. Formulated unconstrained problem allows us to obtain a solution using exist-

ing solution methods wherein solution lies in infinite dimensional space. Once the optimal

network realizable controller is obtained, we obtain a network implementable state-space

realization of it using the method we have introduced.

Furthermore, we provide an alternative all stabilizing network realizable controller

parametrization benefiting existing Youla parametrization which requires to have an ini-

tial controller. We show that when the given initial controller is network realizable, one can

parametrize all stabilizing network realizable controllers with a network realizable Youla

parameter. Moreover, we introduce network realizable controllers in the form of delayed

controllers for strongly connected networked plants which allow us to parametrize all sta-

bilizing network realizable controllers with the Youla parametrization aforementioned. We

derive a model matching problem and define a necessary and sufficient optimal network real-

izable controller problem as a function of initial network realizable controller with sparsity

and delay constraints introduced on Youla parameter. Moreover, we provide its equiva-

lent unconstrained problem benefiting vectorization method wherein a solution in infinite

dimensional space can be obtained benefiting existing solution methods.
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CHAPTER 1. INTRODUCTION

With the increase in size of network systems, their topological constraints and commu-

nication limitations bring challenges in network control problems. The networked system

can be very large, so that communicating with the whole network could be cumbersome,

or communication restrictions may exist in the network. In the platooning of cars, network

distributed heating systems, network distributed controllers has started to gain importance

due to large network sizes.

In this thesis, we are interested in solving optimal network distributed controller problem

with necessary and sufficient conditions in infinite dimensional space and further obtaining

a network implementable state-space realization of it over the given network. There exist

numerous studies on design of network distributed controllers which impose network con-

straints on the controller transfer functions. Some of these works can be given as network

distributed controllers for spatially invariant systems [2], [6], [41], systems with triangu-

lar and band structures [42]-[30], symmetrically interconnected systems [14], dynamically

coupled systems [10], poset causal systems [35], and in the case of plant and controller

structures satisfying quadratic invariance property [23], [33].

Furthermore, optimal state-feedback controller for network distributed systems have

been formulated in [24] by utilizing ADMM method. In the work of [34], decentralized

controllers have been designed using LMI approach. In [22], network distributed controllers

have been designed for systems interconnected over an arbitrary graph using distributed

LMIs which achieve a H∞ performance. In [25] and [13], network distributed controllers

have been studied for heterogeneous and heterogeneous linear parameter varying systems,
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respectively. In [25], a network distributed controller problem for heterogeneous dynamically

coupled systems has been provided, based on L2 gain performance using bilinear matrix

inequalities. In [13], network distributed linear parameter varying (LPV) controllers for the

control of heterogeneous LPV systems have been shown. Additionally, there exist network

distributed controller design problems which utilize the LMIs by involving the state-space

parameters of the plants and controllers [26, 36]. Networked distributed control for identical

dynamically coupled systems has been analyzed in [26]. In the work of [9], a sequential

convex problem has been formulated to find sparse H2 optimal state-feedback controllers.

Moreover, for positive systems, a network distributed controller problem is designed in [32].

Moreover, a model based network distributed controller has been obtained starting with

network realizable dynamic state feedback controller and dynamic observer in [29].

To address the limited amount of local information in network distributed systems,

various network distributed design methods have been formulated to have a stabilizing

network distributed controllers. [12, 11] have studied the model predictive control using

gradients method and control Lyapunov functions. [31] solves the minimization problem

using dynamic dual decomposition which allows networked systems to solve the problem in a

network distributed fashion; however, it does not guarantee stability for network distributed

network problems. Moreover, [7] develops a state-feedback controller for continuous systems

based on a gradient method which solves the infinite horizon linear quadratic cost functional

reformulated by a terminal cost term where the systems are assumed to be stabilizable by a

diagonal state feedback controller. In [20], a distributed LMI problem has been formulated

to have full order network distributed controllers in a distributed fashion.

In literature, optimal network implementable controllers have been studied with suffi-

ciency conditions benefiting existing Youla parametrization [1]. Furthermore, [43] provides

an optimal control problem which can be solved in a convex way without depending on

well-known Youla parametrization. A potential drawback is that stabilization is posed as

infinite dimensional constraints with not know a priory finite support solution. To the au-
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thors’ knowledge, necessary and sufficient conditions for network implementable H2 optimal

controller problem to have a solution in infinite-dimensional space has not been studied so

far.

Existing all stabilizing controller parameterizations require to have either doubly co-

prime factorization of plants or to have an initial output feedback controller. To refrain

from this prerequirements, in chapter 3, we obtain all stabilizing controller parameterization

with constraints introducd on Youla parameter. All stabilizing controller problem is well

studied problem in the literature. Internally stabilizing controller for linear systems have

been parametrized by well-known Youla parameter [44] which has showed that closed loop

response can be shaped by a stable parameter. Afterwards, a closed loop parametrization

for discrete time systems have been shown in [18]. Later, various all stabilizing controller

problems have been formulated benefiting affine Youla parameter to achieve various spec-

ifications. Achievable closed loop maps has been parametrized using stable factorizations

in [39]. State-space formulas has been derived in [8] for all stabilizing controllers solving

standard H∞ and H2 problems. Moreover, all stabilizing controller parametrization has

been provided using doubly-coprime factorization of plant in [5] wherein the closed loop

optimization is also addressed. In [27], all stabilizing controllers has been parametrized

as a function of an initial output feedback controller. Set of all H∞ controllers explicitly

parametrized in the state-space using solutions of linear matrix inequalities [16]. Moreover,

[3] utilizes linear matrix inequalities to obtain output feedback controllers with H∞ and H2

performances. Nonlinear state-feedback H∞ controllers and internally stabilizing optimal

controllers for nonlinear systems have been presented in [38] and [15], respectively. Fur-

thermore, [43] provides an optimal control problem which can be solved in a convex way

without depending on well-known Youla parametrization.

We formulate all stabilizing controller problem by interpreting plant and controller from

a different perspective. We define a congruent plant of any stable/unstable plant, P , as P̄

which is stable, such that it is defined from [iT ;uT ]T to [oT ; yT ]T and when input channel-i
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connects with output-channel-o with a unity feedback, map from u to y is equivalent to

P22. Therefore, we define a controller of P̄ as K̄ = blkdiag(Inx ,K), where K stabilizes P

and nx is the order of the plant. Since P̄ is stable, all stabilizing controllers of congruent

plant can be parametrized with a stable Q̄ as K̄ = −Q̄(I − P̄ Q̄)−1 such that K̄ is in

the form of blkdiag(Inx ,K) where K stabilizes P . By regarding these, we parametrize all

stabilizing controllers benefiting all stabilizing controller parametrization of stable plant

and by introducing constraints on Youla parameter such that the controller of congruent

plant yields a controller structured as blkdiag(Inx ,K), which equivalently brings in the

controller of original plant as K. The formulated all stabilizing controller parametrization

does not require to have an initial controller or doubly-coprime factorization of plant unlike

the well-known all stabilizing controller parametrization.

All stabilizing controller parametrization has been formulated with equality constraints,

instead of solving for a feasible solution for these equality constraints in finite dimensional

space, we define a necessary and sufficient controller problem by subjecting these equality

constraints to norm minimization to be able to define and solve the controller problem

in infinite dimensional space. We further define an equivalent stabilization problem by

benefiting orthogonal spaces where the number of variables and equations necessary to

solve are reduced. Moreover, we provide a two-step solution procedure for unconstrained

controller problem which can be solved as a classical H2 problem wherein the solution lies

in infinite dimensional space.

By network implementable system, we mean a system with network implementable state-

space realization which can be expressed as a strictly causal interaction of some sub-systems

over the given network. Moreover, by network realizable system we mean a system whose

network implementable state-space realization can be obtained. Obtained all stabilizing

controller parametrization allows us also to attain doubly-coprime factorization of K̄ =

blkdiag(Inx ,K) where K is a controller of the given plant such that when the controller

inherits the delay and sparsity constraints of the graph, then coprime factors of K̄ also
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inherits these sparsity and delay constraints. In literature, there exists a method to have

network implementable state-space realization of a given stable structured system which

inherits the network’s sparsity and delay constraints of the graph [1]. Therefore, since

coprime factors are stable by definition, they can be called as network realizable system

when they inherit the sparsity and delay constraints of the given graph and their network

implementable state space realizations can be obtained by the method introduced in [1].

Having network implementable state-space realization of coprimes of blkdiag(Inx ,K) allows

us to attain network implementable state-space realization of such structured controllers,

i.e. controllers which inherit sparsity and delay constraints of the given network, as it will

be shown in chapter 4. Capability to have network implementable state-space realization of

such structured controllers allows us to define the network realizable controllers. Moreover,

the formulated technique to attain network implementable state-space realization of network

realizable controllers allows us to obtain network implementable controllers with fewer order

with respect to the other realization methods as it will be shown in the section of numerical

examples (see chapter 8).

By benefiting the formulated stabilization problem formulated in chapter 3, we formulate

the necessary and sufficient network distributed controller problem in chapter 5 by intro-

ducing sparsity delay constraints on Youla parameter. By benefiting vectorization method

as shown in [37], we define the equivalent unconstrained controller problem which can be

solved using existing solution techniques to attain a solution in infinite dimensional space.

One of the main objective of this work is solving optimal network realizable controller

problem for any networked system in infinite dimensional space. We provide a model

matching problem affine in Q̄ and define an optimal network realizable controller problem

with necessary and sufficiency conditions benefiting the formulated all stabilizing network

realizable controller parametrization. The provided optimal network realizable controller

problem is a constrained problem, therefore, by benefiting a Lagrange multiplier and vec-

torization method, we provide an unconstrained optimal network realizable control problem
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which can be solved using existing solution methods. Our main difference from classical

optimal control problems is that our problem formulation has been defined with necessary

and sufficient conditions and does not require to have an initial stabilizing controller or

doubly coprime factorization of plant.

In chapter 7, we provide an alternative way to parametrize all stabilizing network dis-

tributed controllers. We benefit from the all stabilizing controller parametrization defined

for parallel systems which are controller and plant itself, since there exist a doubly co-

prime factorization of those parallel systems as shown in [40]. After parameterizing the

all stabilizing controllers for parallel plants, one can obtain the all stabilizing controller

parametrization for the plant by feedback interconnection of initial stabilizing controller

and the all stabilizing controller parametrization for parallel systems [27]. Bezout identity

elements that satisfy the doubly coprime factorization of parallel plants: initial stabilizing

controller and plant, obey the network structure when the initial stabilizing controller is

network realizable. Therefore, we are able to define the network realizable all stabilizing

controllers using an initial network realizable controller and a network realizable Youla-

parameter. We obtain a model matching problem to have input to output map affine in

Youla parameter. By using this model matching problem, we define optimal network real-

izable controller problem as a function of a network realizable controller. Furthermore, we

benefit from the vectorization technique shown in [37] to be able to solve the optimal con-

troller problem as an unconstrained problem benefiting existing solution methods wherein

solution lies in infinite dimensional space.

The outline of this thesis is as follows: Chapter 2 presents the problem formulation

and introduces some notation which will be used throughout the paper. In chapter 3, an

all stabilizing controller parametrization has been formulated, moreover, we formulate a

necessary and sufficient controller problem wherein a solution can be obtained in infinite

dimensional space. In chapter 4, a doubly-coprime factorization of controller has been

introduced which allows to have network implementable state-space realization of network
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distributed controllers in reduced order which is one of the main contribution of this paper.

Furthermore, in chapter 5, a necessary and sufficient network realizable controller problem

has been formulated for any network distributed system as an unconstrained problem which

can be solved using existing solution methods wherein solution lies in infinite dimensional

space. Moreover, optimal network realizable controller problem has been formulated in

chapter 6. In chapter 7, we provide an alternative way to parametrize all stabilizing network

distributed controllers benefiting existing all stabilizing controller parametrization. Finally,

the work ends with two numerical examples and comparisons with the existing optimal

controller problems.
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CHAPTER 2. PRELIMINARIES AND DEFINITIONS

In this chapter, we will give definitions that will be used throughout this work. Also,

we will provide theorems that we will benefit to derive our results.

2.1 General Notation

In this section we will provide general notation that will be used throughout this work.

Let vert[xi]i∈I and hor[xi]i∈I denote for vertical and horizontal concatenation of vectors

or matrices {xi}i∈I of appropriate dimension, where I is an index set. Let [xij ]i,j∈I represent

a matrix formed by arranging the sub-matrices {xij}i,j as vert[hor[xij ]j∈I]i∈I. Moreover,

diag[xi]i∈I denotes the block diagonal matrix formed by matrices {xi}i∈I .

Feedback interconnection of P and K is represented with lft(P,K). Moreover, B†u and

C†y implies Moore-Penrose inverse of Bu and Cy such that BuB
†
uBu = Bu and CyC

†
yCy = Cy.

When Bu has linearly independent columns, then B†u can be given as B†u = (BT
uBu)−1BT

u .

Moreover, when Cy has linearly independent rows than its pseudo inverse can be given

as C†y = CTy (CyC
T
y )−1. Furthermore, we use blkdiag(A1, A2) to define a block diagonal

matrix constructed with its input arguments such that

A1 0

0 A2

.

If A ∈ Rm×n and B ∈ Rp×q, the Kronecker product A⊗B ∈ Rmp×nq is defined as

A⊗B :=


A11B . . . A1nB

...
. . .

...

Am1B . . . AmnB

 .
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Given a matrix A =

[
a1, ..., an

]
∈ Cm×n, where {ai}i denote the columns of A, we

associate a vector vec(A) = vert

[
ai

]
i

∈ Cmn which is a vector formed by vertically

concatenating the columns of matrix A. Define vec−1(·) as the inverse operation of the

vec(·) such that vec−1(vec(A)) = A. When required, we shall use I for an identity matrix

and 0 for a zero matrix of appropriate size.

2.2 System Theory

A system P is represented by a quadruple (A,B,C,D) or

P :

x(k + 1)

y(k)

 =

A B

C D


x(k)

u(k)

 , (2.1)

in terms of its state-space matrices A, B C and D; and state, input and output vectors x(k),

u(k) and y(k), respectively. A state-space representation (A,B,C,D) is asymptotically

stable if A is Schur stable. (A,B,C,D) is said to be stabilizable if

[
zI −A B

]
has full

rank for any z ∈ C with z ≥ |1|. (A,B,C,D) is said to be detectable if

zI −A
C

 has full

rank for any z ∈ C with z ≥ |1|.

Given a state-space representation (A,B,C,D), the transfer function matrix correspond-

ing to the system P is given by the z–transform of its impulse response

P (z) := tf(P ) := D +

∞∑
k=0

z−k−1CAkB. (2.2)

For given two systems G and K in terms of their state-space representations

G :


x(k + 1)

z(k)

y(k)

 =


A B1 B2

C1 D11 D12

C2 D21 0


x(k)

u(k)

 , K :

xK(k + 1)

u(k)

 =

AK BK

CK DK


xK(k)

y(k)

 ,
(2.3)
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the lower linear fractional transformation (LFT) of G and K is given by the Redheffer

star-product

lft(G,K) :


x(k + 1)

xK(k)

z(k)

 =


A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21



x(k)

xK(k)

w(k)

 .
(2.4)

When these two systems are given in terms of their transfer function matrices G(z) and

K(z) where G(z) is the mapping from

w(k)

u(k)

 to

z(k)

y(k)

 while K(z) is the mapping from

y(k) to u(k), we can partition the transfer function matrix G(z) in terms G11(k), G12(z),

G21(z) and G22(z) as

G(z) :=

G11(z) G12(z)

G21(z) G22(z)

 ,
where G22(z) is the mapping from u(k) to y(k). Then the LFT of G(z) and K(z) is given

by

lft(G(z),K(z)) := G11(z) +G12(z)K(z)(I −G22(z)K(z))−1G21(z).

when D matrix of G22 is zero, i.e. G22(z) is strictly proper.

A discrete-time system is called as bounded-input bounded-output (BIBO) stable, if the

impulse response of the system is absolutely summable. A system G is BIBO stable if and

only if all the poles of its transfer function matrix G(z) are inside the unit circle. A discrete-

time system G with a state-space representation (A,B,C,D) is called as internally stable

or asymptotically stable if A is Schur-stable. If G = (A,B,C,D) is asymptotically stable,

then tf(G) is BIBO stable, but not vice versa. We say that a system K is a controller of G

or K internally stabilizes G if lft(G,K) is asymptotically stable.

For a given discrete-time system G, H2 norm of the system can be given as

||G(z)||22 =
1

2π

∫ π

−π
tr(G(ejθ)G∗(ejθ)dθ)
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wherein G(z) is the transfer function matrix of G. If a state-space realization of G is given

by (A,B,C,D), then H2 norm of G can be given as

||G||22 = tr(DDT + CMcC
T ),

where Mc � 0 is the controllability grammian that solves the discrete-time Lyapunov equa-

tion

AMcA
T −Mc +BBT = 0. (2.5)

Moreover, solution of equation (2.5) can be given as

Mc =
∞∑
k=0

AkBBT (AT )k.

Moreover, RH∞ denotes the set of real-rational proper stable transfer function matrices.

2.3 Network Distributed Systems

In this section, we will introduce network distributed systems and will provide a general

representation of them.

Definition 1. A group of subsystems interacting over a communication network is defined

as a networked or distributed or an interconnected system. [1]

Figure 2.1 is an example of a network distributed system, which consists of network

distributed plants and their controller units.

Consider n sub-systems {Pi}i∈{1,...,n} interacting over a network represented by directed

pseudograph G = (V, E) with the sub-systems at its vertices and communication links

corresponding to the edges. Edge set can be defined as (i, j) ∈ E which denotes that there

is an edge between Pi and Pj . Directed neighborhood index sets for each node Pi are

N−i = {j|(j, i) ∈ E}, N+
i = {j|(i, j) ∈ E} and Ni = {j|(j, i) ∈ E ∨ (i, j) ∈ E} = N−i ∪ N

+
i ,

where N−i and N+
i are incoming and outgoing neighbor sets of node Pi, respectively.
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Figure 2.1 An example of a distributed system which consists of 6 sub-systems and their

controller units interacting over a causal network.

For a given graph G = (V, E), the unique binary matrices can be defined as in the

following

[A(G)]ij =

 1 if i = j or (i, j) ∈ E

0 else.
(2.6)

We use Gn to define 1n ⊗ G, for instance G2 =

G G

G G

.

Definition 2. A directed graph is strongly connected if there is a path from every node to

every other node.

In this work, we will come across with block matrices that are made up of smaller sub-

matrices. These matrices are best described in terms of their sparsity structures. We say a

block matrix A = [Aij ]i,j∈{1,...,n} is structured according to an n× n binary matrix J if the

sub-matrices Aij is a zero matrix whenever Jij = 0. The dimensions of the sub-matrices

{Aij}i,j are described using two integer-valued vectors as follows. Let Pa = (a1, ..., an) and

Pb = (b1, ..., bn) be two n-tuples with ai and bi being integers for all i ∈ {1, ..., n}. Then,

matrix A is said to be partitioned according to (Pa,Pb) if the sub-matrix Aij has dimensions

ai×bj ∀i, j. This definition of partitioning can be easily extended to the case of vectors, too.
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A vector x is said to be partitioned according to Pa if it can be written as vert[xi]i∈{1,...,n}

where xi is a real vector of size ai for all i ∈ {1, ..., n}. We say that Pa is the partition for

the vector x.

Definition 3. Given an n × n binary matrix J and n–tuples Pa, Pb, S(J,Pa,Pb) denotes

the set of matrices that are partitioned according to (Pa,Pb) and structured according to J .

For example, according to the above definition, the following matrix

A =



1 2 3 0 0 0

2 1 1 0 0 0

3 1 2 0 0 0

0 1 3 2 2 1


(2.7)

belongs to set A ∈ S(J,Pa,Pb) wherein J =


1 1 0

1 1 0

0 1 1

, Pa = (1, 2, 1) and Pb = (1, 2, 3).

Let each subsystem Pi be a discrete-time causal finite-dimensional linear time invariant

system. State space equations of each stable subsystem Pi can be given as

xi(k + 1) = Aiixi(k) +Bw
i wi(k) +Bu

i ui(k) +
∑
j∈N−

i

Bζ
ijζij(k)

zi(k) = Cziixi(k) +Dzw
i wi(k) +Dzu

i ui(k) +
∑
j∈N−

i

Dzζ
ij ζij(k)

yi(k) = Cyiixi(k) +Dyw
i wi(k) +

∑
j∈N−

i

Dyζ
ij ζij(k)

ηri = Cηrixi(k), ∀r ∈ N+
i

(2.8)

where xi(k), wi(k), ui(k), zi(k) and yi(k), ηri(k), and ζij(k) denote the local state, local

exogenous input, local control input, local regulated output, local measurement output

vectors, local outputs to the network, and local inputs from the network corresponding to

a networked subsystem Pi, respectively. For a given network G, incoming message vectors

at each node are given by

ζij(k) = ηij(k), ∀(vj , vi) ∈ E (2.9)
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-η32(k) ζ32(k)

Figure 2.2 A simple example of an interconnected system made of 3 different sub-systems.

Definition 4. Networked systems given by (2.8) and (2.9) are denoted as strictly causal

interaction of subsystems over a given network G.

Combining (2.8) and (2.9), network inputs and outputs can be eliminated to have the

state-space equations for the subsystems as

xi(k + 1) = Aiixi(k) +
∑
j∈N−

i

Aijxj(k) +Bw
i wi(k) +Bu

i ui(k)

zi(k) = Cziixi(k) +
∑
j∈N−

i

Czijxj(k) +Dzw
i wi(k) +Dzu

i ui(k)

yi(k) = Cyiixi(k) +
∑
j∈N−

i

Cyijxj(k) +Dyw
i wi(k)

(2.10)

where Aij := Bζ
ijC

η
ij , C

z
ij := Dzζ

ij C
η
ij and Cyij := Dyζ

ij C
η
ij . General networked system P can

be given as

P :


x(k + 1)

z(k)

y(k)

 =


A Bw Bu

Cz Dzw Dzu

Cy Dyw 0



x(k)

w(k)

u(k)

 (2.11)

where A := [Aij ]i,j , Cz := [Czij ]i,j and Cy := [Cyij ]i,j are structured according to A(G),

while Bw := diag[Bw
ii ]i, Bu := diag[Bu

ii]i, Dzw := diag[Dzw
ii ]i, Dzu := diag[Dzu

ii ]i and

Dyw := diag[Dyw
ii ]i have a block diagonal structure.

For the given interconnected system in figure 2.2 consists of 3 sub-systems,

A ∈ S(A(G),Px,Px), Cy ∈ S(A(G),Py,Px) and Cz ∈ S(A(G),Pz,Px) matrices can be

given as follows
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A =


A11 A12 0

A21 A22 0

0 A32 A33

 , Cz,y =


Cz,y11 Cz,y12 0

Cz,y21 Cz,y22 0

0 Cz,y32 Cz,y33

 , (2.12)

Moreover, Bw ∈ S(I,Px,Pw), Bu ∈ S(I,Px,Pu), Dzw ∈ S(I,Pz,Pw), Dzu ∈ S(I,Pz,Pu)

and Dyw ∈ S(I,Py,Pw) matrices can be given as follows

Bw,u =


Bw,u

1 0 0

0 Bw,u
2 0

0 0 Bw,u
3

 , Dzw,zu,yw =


Dzw,zu,yw

1 0 0

0 Dzw,zu,yw
2 0

0 0 Dzw,zu,yw
3

 . (2.13)

Definition 5. [37] Given a digraph G = (V, E) with n vertices and n tuples Px, Pu and Py;

let A(G) be the unique binary matrix as defined in equation (2.6). We define T(G,Py,Pu)

as the set of transfer function matrices, and S(G,Px,Py,Pu) as the set of state-spaces with

a state-space realization (A,Bu, Cy, Dyu) such that A ∈ S(A(G),Px,Px), Bu ∈ S(I,Px,Pu),

Cy ∈ S(A(G),Py,Px) and Dyu ∈ S(I,Py,Pu), where I is identity matrix and sets belong to

S(I, ·, ·) are block diagonal.

For A ∈ S(A(G),Px,Px), Bu ∈ S(I,Px,Pu), Cy ∈ S(A(G),Py,Px) matrices given as in

(2.12) and (2.13) and Dyu ∈ S(I,Py,Pu), plant P22 = ss(A,Bu, Cy, Dyu) ∈ S(G,Px,Py,Pu)

has the following structure in z-domain

P22(z) =


P 22

11 (z) z−1P 22
12 (z) 0

z−1P 22
21 (z) P 22

22 (z) 0

z−2P 22
31 (z) z−1P 22

32 (z) P 22
33 (z)

 , (2.14)

where P 22
ij for {i, j} ∈ {1, 2, 3} are casual systems and we have P22(z) ∈ T(G,Py,Pu). As it

can be noticed from P22(z), since the length of path from node-1 to node-2 is one, we observe

one delay in front of P 22
21 (z), similarly since the length of path from node-1 to node-3 is two,

we observe two delays in front of P 22
31 (z) and so on. Moreover, since there is no directed

path from node-3 to node-1 and node-2, we have zero entries on the places of P 22
13 (z) and

P 22
23 (z).
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Theorem 1. [37, Theorem 1] Given a digraph G = (V, E) and n tuple Pu and Py.

1. Let P (z) be a transfer function matrix in T(G,Py,Pu) with input vector u(k) and output

vector y(k) partitioned according to Pu, Py, respectively. Then there exists a state-space

realization (A,Bu, Cy, Dyu) of P (z) in S(G,Px,Py,Pu) with state vector x(k) partitioned

according to some n tuple Px.

2. If P (z) is also BIBO stable, i.e. P (z) ∈ Ts(G,Py,Pu), then there exists a state-space

realization (A,Bu, Cy, Dyu) of P (z) in Ss(G,Px,Py,Pu) for some n tuple Px, i.e. A is

Schur-stable.

Definition 6. [1] We refer to the property to realizing a structured transfer function matrix

in T(G,Py,Pu) as a stabilizable and detectable networked system which is a strictly causal

interaction over G with the same transfer function as network realizability.

Definition 7. Stabilizable and detectable system’s state space realization P ∈

S(G,Px,Py,Pu) can be implemented as strictly causal interaction of subsystems (2.8) and

(2.9) over a given graph G. Such systems are said to be network implementable. Moreover,

such state-space realizations are said to be network implementable state-space realization.

Theorem 1 ensures that a stable system P with transfer function matrix P (z) ∈

Ts(G,Py,Pu) is network realizable over G with a network implementable state-space real-

ization P̃ ∈ S(G,Px,Py,Pu) such that P (s) = tf(P̃ ), where ‘tf’ is the operator transforms

state-space system into transfer function.

The sets of asymptotically stable structured systems over the network interconnection

G with input and output partitions as Pu and Py are denoted by Ss(G,Px,Py,Pu) and

Ts(G,Py,Pu), respectively.

2.4 Youla Parametrization

Herein, we state a definition of doubly coprime factorization which will be used to define

all stabilizing controller parametrization, then we will review well known Youla-Kuc̆era all

stabilizing controller parametrization.
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Definition 8. [5] A doubly coprime factorization of P22 is a set of maps N , M , Ñ , M̃ ,

with P̄22 = NM−1 = M̃−1Ñ satisfying X̃ −Ỹ

−Ñ M̃


M Y

N X

 = I, (2.15)

for some stable X, Y , X̃ and Ỹ . Further, M and N are referred to as right coprime factors

while M̃ and Ñ are referred to as left coprime factors of P22.

Theorem 2. [5] Let a doubly coprime factorization of P22 be given as in definition 8. All

stabilizing controllers of P22 can be given as

K = (Y −MQ)(X −NQ)−1 = (X̃ −QÑ)−1(Ỹ −QM̃) (2.16)

with Q ∈ RH∞ .

Parametrization in (2.16) allows one to define all possible controllers when a doubly

coprime factorization of plant is given.
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CHAPTER 3. AN ALTERNATIVE CHARACTERIZATION OF

STABILIZATION

In this chapter, we first derive all stabilizing controller parametrization of stable plants.

We define internally stabilizing controllers by re-interpreting plant and controller. We de-

fine a congruent stable plant of the original plant which is not necessarily stable, such that

controller of the congruent plant is linearly function of the original plant’s controller. When

we put structural constraints on the all stabilizing controllers of the stable congruent plant,

these controllers embody the controllers of the main plant. Therefore, all stabilizing con-

troller problem of the original plant is defined as all stabilizing controllers of the congruent

stable plant with structural constraints. Regarding this problem, we obtain all stabilizing

controller parametrization of any plant benefiting all stabilizing controller parametrization

of stable plants. All stabilizing controller parametrization is obtained with equality con-

straints wherein Youla parameter is the variable, instead of solving for a feasible solution

of these constraints, we subject these equality constraints to norm minimization to define

a necessary and sufficient controller problem. We further reduce the number of variables

in stabilization problem benefiting orthogonal spaces and provide a two-step procedure to

solve and obtain a solution in infinite dimensional space. Moreover, we provide necessary

and sufficient stabilizability and detectability test problems, then we formulate necessary

and sufficient problems to have a dynamic state feedback controller and state observer

benefiting all stabilizing controller parametrization of stable plants.
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Figure 3.1 A block diagram of feedback interconnection of a plant and its controller,

lft(P22,K).

3.1 All Stabilizing Controller Parametrization

In this section, we will first derive all stabilizing controller parametrization of stable

plants, then we will define a stably defined congruent plant of given any stable/unstable

plant and its controller to benefit from all stabilizing controller parametrization of stable

plants. Afterwards, we derive all stabilizing controller parametrization wherein equality

constraints are introduced on Youla parameter by benefiting all stabilizing controller pa-

rameterization of stable plants.

3.1.1 Problem Formulation

In the next lemma we provide all stabilizing controller parametrization of stable plants.

Lemma 1. All stabilizing controllers of stable plant P22 can be parametrized as K = −Q(I−

P22Q)−1 with Q ∈ RH∞.

Proof of lemma 1 can be found at appendix A.1.

Let the generalized plant be defined as in the following

P :


x(k + 1)

z(k)

y(k)

 =


A Bw Bu

Cz Dzw Dzu

Cy Dyw 0



x(k)

w(k)

u(k)

 (3.1)
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Bu z−1 Cy- - f - -
u(k) y(k)

i(k)

? r
A

o(k)

K

Inx �

�

P̄22

Figure 3.2 An equivalent block diagram of feedback interconnection of a plant and its

controller, lft(P̄22,blkdiag(Inx ,K)).

According to lemma 1, when given plant P22 is stable, all stabilizing controllers of P22

can be parametrized as

K = −Q(I − P22Q)−1 (3.2)

with a stable Q. However, when given plant is unstable, one can not benefit from this

all stabilizing controller parametrization. Hence, we define a stable congruent plant of the

original plant in larger dimensions to be able to benefit the controller parametrization given

in (3.2).

As it can be trivially observed from figure 3.1 and figure 3.2, block diagram exists in

figure 3.1 is equivalent to block diagram exists in figure 3.2. Regarding figure 3.2, we can

define the feedback interconnection with two systems, stable congruent plant, P̄22, and its

controller, K̄, which are

P̄22 =

 z−1A z−1ABu

z−1Cy z−1CyBu

 , (3.3a)

K̄ =

Inx 0

0 K

 . (3.3b)

Then, feedback interconnection of P22 and controller K is equivalent to feedback intercon-

nection of P̄22 and K̄. As it can also be observed from block diagram of P̄22 in figure 3.2,
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when input channel-i and output channel-o gets connected with a unity feedback, input u

to output y map becomes equivalent to P22.

Since P̄22 given in (3.3a) is stable, one can parametrize all stabilizing controllers of

P̄22 with a stable Q̄ as K̄ = −Q̄(I − P̄22Q̄)−1. Moreover, if K̄ is structured as K̄ =

blkdiag(Inx ,K), then K is a controller of P22.

3.1.2 All Stabilizing Controller Parametrization

Next, we define the constraints need to be satisfied by Q̄ to be able to obtain all sta-

bilizing controllers of P̄22 structured as K̄ = blkdiag(Inx ,K) by all stabilizing controller

parametrization K̄ = −Q̄(I − P̄22Q̄)−1, which will equivalently bring us all stabilizing con-

trollers of P22.

Lemma 2. Let P be defined as in (2.11) and let Q̄ :=

Q1 Q2

Q3 Q4

. All stabilizing controllers

of P can be parametrized as K = −Q4(I−P22Q4)−1 where Q̄ ∈ RH∞ satisfies the followings

[
z−1A− I z−1ABu

]
Q̄ =

[
I 0

]
, (3.4a)

Q̄

z−1A− I

z−1Cy

 =

I
0

 . (3.4b)

Proof. By regarding lemma 1, since P̄22 given in (3.3) is stable, all stabilizing controllers of

P̄22 can be parametrized as in the following

K̄ = −Q̄(I − P̄22Q̄)−1 (3.5)

with Q̄ ∈ RH∞. In order to have a stabilizing K also for the given plant P , we need to

find a Q̄ which induces a structured K̄ := blkdiag(Inx ,K) such that lft(P̄22, K̄) is stable.

By multiplying equation (3.5) from right with (I − P̄22Q̄) and using the definition of K̄, we

obtain the followings
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K̄(I − P̄22Q̄) = −Q̄I 0

0 K



I 0

0 I

−
 z−1A z−1ABu

z−1Cy z−1CyBu


Q1 Q2

Q3 Q4


 = −

Q1 Q2

Q3 Q4


 I − z−1AQ1 − z−1ABuQ3 −z−1AQ2 − z−1ABuQ4

K(−z−1CyQ1 − z−1CyBuQ3) K(I − z−1CyQ2 − z−1CyBuQ4)

 =

−Q1 −Q2

−Q3 −Q4


(3.6)

Using last matrix equality, we obtain the following equations

(z−1A− I)Q1 + z−1ABuQ3 = I, (3.7a)

(z−1A− I)Q2 + z−1ABuQ4 = 0, (3.7b)

K(−z−1CyQ1 − z−1CyBuQ3) = −Q3, (3.7c)

K(I − z−1CyQ2 − z−1CyBuQ4) = −Q4. (3.7d)

Using (3.7b) we can express Q2 as follows

Q2 = (zI −A)−1ABuQ4 (3.8)

By plugging definition of Q2 as in (3.8) into (3.7d), we obtain the followings

K(I − z−1Cy(zI −A)ABuQ4 − z−1CyBuQ4) = −Q4,

K(I − P22Q4) = −Q4.

(3.9)

By multiplying (3.9) from right with (I − P22Q4)−1, we obtain the following

K = −Q4(I − P22Q4)−1. (3.10)

Moreover, one can equivalently parametrize K̄ as K̄ = −(I−Q̄P̄22)−1Q̄, using this parametriza-

tion we obtain the followings
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(I − Q̄P̄22)K̄ = −Q̄
I 0

0 I

−
Q1 Q2

Q3 Q4


 z−1A z−1ABu

z−1Cy z−1CyBu



I 0

0 K

 = −

Q1 Q2

Q3 Q4


I − z−1Q1A− z−1Q2Cy −z−1Q1ABuK − z−1Q2CyBuK

−z−1Q3A− z−1Q4Cy K − z−1Q3ABuK − z−1Q4CyBuK

 =

−Q1 −Q2

−Q3 −Q4


(3.11)

Using last matrix equality, we obtain the following equations

Q1(z−1A− I) + z−1Q2Cy = I, (3.12a)

−z−1Q1ABuK − z−1Q2CyBuK = −Q2, (3.12b)

Q3(z−1A− I) + z−1Q4Cy = 0, (3.12c)

K − z−1Q3ABuK − z−1Q4CyBuK = −Q4. (3.12d)

One can obtain equations (3.7c), (3.12b) and (3.12d) using (3.7a), (3.7b), (3.12a), (3.12c)

and (3.10). Therefore, equations (3.7a), (3.7b), (3.12a) and (3.12c) constitutes sufficient

equations to solve for a solution. Equation (3.6) inherits the structural property of K̄

such that K̄ = blkdiag(Inx ,K). Hence, for a Q̄ which satisfies the equations in (3.7a),

(3.7b), (3.12a) and (3.12c), we can obtain K as K = −Q4(I − P22Q4)−1 and construct K̄

as K̄ = blkdiag(Inx ,K) which is a stabilizing controller of P̄22, i.e. lft(P̄22, K̄) is stable,

equivalently we have lft(P22,K) is stable.

Lemma 2 allows one to parametrize all stabilizing controllers of P22 without necessitating

to have a doubly coprime factorization of P22 unlike well-known Youla-Kucera all stabiliz-

ing controller parametrization given in (2.16). There exists also all stabilizing controller

parametrization developed in [43] which does not also require any priori computations like

doubly coprime factorization of plant. Our main purpose of deriving this all stabilizing

controller parametrization is to show that one can obtain all stabilizing controllers of the

given plant by all stabilizing controller parametrization of a stably defined congruent stable

plant with some structural constraints on its controller.
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Next, we show that all stabilizing controller parametrization given in lemma 2 can be

written with reduced number of equations.

Corollary 1. Let P be defined as in (2.11). All stabilizing controllers of P can be parametrized

as K = −Q4(I − P22Q4)−1 where Q4 ∈ RH∞ satisfies the followings[
z−1A− I z−1ABu

]
Q̄ =

[
I 0

]
, (3.13a)

Q3(z−1A− I) + z−1Q4Cy = 0. (3.13b)

Proof of corollary 1 can be found at appendix A.2.

Corollary 1 allows us to parametrize all stabilizing controllers with reduced number of

equality constraints.

3.1.3 All Stabilizing Controllers for the case of Dyu 6= 0

Let K = ss(AK , BK , CK , DK) be a controller of P22 = ss(A,Bu, Cy, Dyu). In the case of

Dyu 6= 0, one should have I−DKDyu such that it is invertible to have a well-posed feedback

interconnection. Moreover, to design the all controllers for the case of Dyu 6= 0, one can

choose P̄22 as P̄22 =

 z−1A z−1ABu

z−1Cy z−1CyBu +Dyu

 and follow the steps in proof of lemma 2.

Repeating the steps in proof of lemma 2, one will trivially come up with the same constraint

set given in (3.4) to parametrize all stabilizing controllers of P22. Moreover, using controller

parametrization K = −(I − Q4P22)−1Q4, we obtain that DK = −(I − DQ4Dyu)−1DQ4

wherein DQ4 is D matrix of system Q4, therefore we need I − DQ4Dyu as invertible to

have a well-defined controller. Therefore, one need to impose constraint of I −DQ4Dyu is

invertible in addition to constraints given in (3.4) to parametrize all stabilizing controllers

of P22 when Dyu 6= 0. Using DK = −(I − DQ4Dyu)−1DQ4 , we obtain I − DKDyu as

(I − DQ4Dyu)−1 whose inverse is I − DQ4Dyu which shows that feedback interconnection

of plant and controller is well-posed with this controller parametrization.
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3.2 Output Feedback Controller Problem

As it is shown in section 3.1, one can parametrize all stabilizing controllers of P with

a stable Q̄ satisfying the constraint set (3.4). In this section, we will show that equation

set in (3.4) can be reduced to one equation. One may solve equality constraint in finite

dimensional space by defining finite impulse responses of the systems with not know a

priory finite support solution. Instead of solving zero equality problem in finite dimensional

space, we define the infinite dimensional problem by considering its norm minimization.

The following theorem sets a necessary and sufficient problem to obtain an output feedback

controller benefiting all stabilizing controller parametrization obtained in lemma 2.

Corollary 2. Let the plant be as given in (2.11). There exists an internally stabilizing

controller, if and only if there exist Q̃1 and Q4 which make the objective of following problem

zero.

min
Q̃1,Q4

∥∥∥A2(z−1A− I)− (z−1A− I)Q̃1(z−1A− I) +ABuQ4Cy

∥∥∥2

2

s.t. Q̃1 ∈ RH∞, Q4 ∈ RH∞.
(3.14)

Moreover, let Q̃∗1 and Q∗4 be solution of (3.14) such that its objective is zero, then a controller

can be constructed as K = −Q∗4(I − P22Q
∗
4)−1.

Proof. Since equations given in (3.4) are necessary and sufficient constraints to have a

controller according to lemma 2, they need to be satisfied with a feasible stable Q̄ if there

exists any controller. Using (3.12c) and (3.7b), we can write Q2 and Q3 in terms of Q4 as

follows

Q2 = −z−1(z−1A− I)−1ABuQ4, (3.15a)

Q3 = −z−1Q4Cy(z
−1A− I)−1. (3.15b)

Using definition of Q2 given in (3.15a), we can write equivalent of equation (3.12a) as follows

(z−1A− I)Q1(z−1A− I) = z−1A− I + z−2ABuQ4Cy. (3.16)



www.manaraa.com

26

Moreover, we can also write equivalent of equation (3.7a) as in (3.16), using definition of Q3

given in (3.15b). Also, a stable Q4 satisfying (3.16) ensures the stability of Q2 and Q3 by

regarding equalities (3.7b) and (3.12c). Therefore, equations given in (3.4) can be reduced

to one equation given in (3.16).

A Q1 satisfying (3.16) admits a form Q1 = −I − z−1A + z−2Q̃1 where Q̃1 is casual,

therefore we can simplify (3.16) as follows

A2(z−1A− I)− (z−1A− I)Q̃1(z−1A− I) +ABuQ4Cy = 0. (3.17)

An equivalent constraint of (3.17) can be written as its norm is equal to zero as in the

following equation

∥∥∥A2(z−1A− I)− (z−1A− I)Q̃1(z−1A− I) +ABuQ4Cy

∥∥∥2

2
= 0. (3.18)

Therefore, if there exists a solution of (3.14) such that its objective is zero, then a controller

can be constructed as K = −Q4(I − P22Q4)−1 by regarding lemma 2.

Problem (3.14) allows us to define a stabilization problem in infinite dimensional space,

therefore it constitutes a necessary and sufficient problem for stabilization problem. For

any given plant, if there exists a solution to problem (3.14) which yields a zero objective,

then one can claim that there exists a controller for the given plant.

Problem given in (3.14) is not in the form of classical H2 problem. One can benefit

the vectorization method as shown in [37] to have the objective function in the form of

||H̄ + ŪQ̄||22 wherein Q̄ is variable which can be solved using existing solution methods

of H2 problem where a solution can be obtained in infinite dimensional space. However,

vectorization method is computationally burdensome. Therefore, in the next section, we

will provide an equivalent necessary and sufficient problem of (3.14) which can be solved to

have a solution in infinite dimensional space without requiring vectorization method.
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3.2.1 A Two-Step Procedure for Controller Synthesis Problem

In the previous section, we have defined the stabilization problem with variables Q̃1

and Q4. In this section by benefiting orthogonal spaces of ABu and Cy, we will eliminate

the variable Q4. Afterwards, we will provide a two-step solution procedure for controller

synthesis problem to obtain a controller in infinite dimensional space without a need of

vectorization method.

Corollary 3. Let the plant be as given in (2.11). Let A, Bu and Cy be such that null

spaces of (ABu)T and Cy are not empty. Let LT be a concatenation of null space vectors of

(ABu)T and define L := LTT . Let R be a concatenation of null space vectors of Cy. There

exists an internally stabilizing controller of P , if and only if there exists a Q̃1 which makes

the objective of the following problem zero.

min
Q̃1

∥∥∥−LA2 + L(z−1A− I)Q̃1

∥∥∥2

2
+
∥∥∥−A2R+ Q̃1(z−1A− I)R

∥∥∥2

2

s.t. Q̃1 ∈ RH∞

(3.19)

Moreover, let Q̃∗1 be a solution to (3.19) such that objective of (3.19) is zero, and let Q∗4 =

(ABu)†(−A2(z−1A− I) + (z−1A− I)Q̃∗1(z−1A− I))C†y, then an internally stabilizing can be

given as K = −Q∗4(I − P22Q
∗
4)−1.

Proof. A feasible solution to (3.17) must satisfy the followings

− LA2(z−1A− I) + L(z−1A− I)Q̃1(z−1A− I) = 0,

−A2(z−1A− I)R+ (z−1A− I)Q̃1(z−1A− I)R = 0.

(3.20)

Moreover, equality constraints in (3.20) can be simplified to

− LA2 + L(z−1A− I)Q̃1 = 0, (3.21a)

−A2R+ Q̃1(z−1A− I)R = 0. (3.21b)

By regarding corollary 2, there exists an internally stabilizing controller if and only if there

exists a feasible solution to (3.17) or equivalently to (3.21). Therefore, there exists an
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internally stabilizing controller if and only if there exists a solution to (3.19) such that its

objective is zero and results follow corollary 2.

Remark 1. It should be noted that when null space of (ABu)T or null space of Cy is empty,

objective function of problem (3.19) reduces to
∥∥∥−LA2 + L(z−1A− I)Q̃1

∥∥∥2

2
or∥∥∥−A2R+ Q̃1(z−1A− I)R

∥∥∥2

2
. Controller problems for these special cases can be found in

appendix B.2.

Problem in (3.19) allows one to solve the problem in smaller dimensions, in terms of

both variable and constraint set.

As it can be noticed, problem given in (3.19) is not still in the form of ||H + UQV ||22,

hence classicalH2 problem solution methods can not be applied. One may take advantage of

the vectorization method as shown in [37] to put the problem (3.19) into form of ||H̄+ŪQ̄||22

wherein Q̄ is variable to benefit from the existing solution methods of H2 problem. Besides,

we will show next that problem (3.19) can also be solved as two-step H2 problem to avoid

the vectorization method since it is computationally burdensome.

Theorem 3. Let P be as given in (2.11). Let A, Bu and Cy be such that null spaces of

(ABu)T and Cy are not empty. Let LT be a concatenation of null space vectors of BT
u and

define L := LTT . Let R be a concatenation of null space vectors of Cy. Let Q̃∗1 be a solution

of the following problem if there exists which makes its objective zero.

min
Q̃1

∥∥∥−LA2 + L(z−1A− I)Q̃1

∥∥∥2

2

s.t. Q̃1 ∈ RH∞

(3.22)

Let b be column rank of ABu and let nx be order of P22. Moreover, let W ∈ RHnx×b∞ be a

any stable transfer function satisfying L(z−1A− I)W = 0 such that W †W = I. Let q∗ be a

solution of the following problem if there exists any which makes its objective zero.

min
q

∥∥∥−A2R+ Q̃∗1(z−1A− I)R+Wq(z−1A− I)R
∥∥∥2

2

s.t. q ∈ RHb×nx∞

(3.23)
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There exists an internally stabilizing controller, if and only if there exist such Q̃∗1 and q∗.

Moreover, for defined Q̃1 := Q̃∗1 + Wq∗ and Q4 := (ABu)†(−A2(z−1A − I) + (z−1A −

I)Q̃1(z−1A − I))C†y, one can obtain an internally stabilizing controller as K = −Q4(I −

P22Q4)−1.

Proof. One need to have a feasible solution to (3.21) to obtain a controller according to

corollary 3. To obtain Q̃1, we can solve

− LA2 − L(z−1A− I)Q̃∗1 = 0 (3.24)

Since this equation is an affine subspace, all the other Q̃1s satisfying this equation must be

such that

Q̃1 = Q̃∗1 + Q̃0
1 (3.25)

where L(z−1A− I)Q̃0
1 = 0. This means Q̃0

1 must be in the span of W where

L(z−1A− I)W = 0. (3.26)

Therefore, we can express Q̃0
1 as Q̃0

1 = Wq, so we can obtain Q̃1 as Q̃1 = Q̃∗1 + Wq using

equation (3.25). Among these Q̃1s we want to find one such that it solves (3.21b), so, by

substituting Q̃1 = Q̃∗1 +Wq into (3.21b) we obtain

−A2R+ (Q̃∗1 +Wq)(z−1A− I)R = 0. (3.27)

Therefore, equalities in (3.21) can be satisfied if and only if there exist feasible solutions

to problems (3.22) and (3.23) such that their objectives hold zero norm, therefore results

follow corollary 3.

Remark 2. Let A and Bu be such that null space of ABu is not empty. Let b be column

rank of ABu and let nx be order of P . Let W0 ∈ Rnx×b be any matrix with full column rank

and let β be a Lagrange multiplier high enough. A W satisfying L(z−1A − I)W = 0 such

that W †W = I can be found by solving the following problem

min
W

∥∥∥∥∥∥∥
βL(z−1A− I)W

W −W0


∥∥∥∥∥∥∥

2

2

. (3.28)
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Problem given in (3.28) can be equivalently written as in the following form which can be

solved using existing solution methods of H2 problem to have a solution in infinite dimen-

sional space.

min
W

∥∥∥∥∥∥∥
 0

−W0

+

βL(z−1A− I)

I

W
∥∥∥∥∥∥∥

2

2

. (3.29)

It should be noted that minimization function ||W −W0||22 functions as disturbance to have

a W such that W †W = I. Moreover, β should be chosen high enough to have the constraint

L(z−1A− I)W = 0 satisfied.

Problems defined in (3.22) and (3.23) can be solved using existing solution methods of

H2 optimal problem to have a solution in infinite dimensional space since their objectives

holds the form of ‖H + UQV ‖22 wherein Q is variable. Therefore, if there exists a controller,

one can obtain a controller using the procedure described in theorem 3.

3.3 Special Cases

In this section we will provide some special cases of output feedback problem. We will

first introduce stabilizability and detectability test problems. Afterwards, we will provide

dynamic state-feedback and observer problems.

3.3.1 Stabilizability and Detectability Conditions

Herein, we introduce the necessary and sufficient conditions for stabilizability and de-

tectability.

Lemma 3. Plant in (2.11) or the pair (A,Bu) is stabilizable if and only if there exist casual

Q̄1 and Q̄3 which make the objective of the following problem zero.

min
Q̄1,Q̄3

∥∥∥∥∥∥∥I −
[
z−1A− I z−1Bu

]Q̄1

Q̄3


∥∥∥∥∥∥∥

2

2

s.t. Q̄1 ∈ RH∞, Q̄3 ∈ RH∞.

(3.30)
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Proof of lemma 3 can be found at appendix A.3. Lemma 3 provides a necessary and

sufficient problem to test the stabilizability of the given plant. Next, we will provide a

necessary and sufficient problem to test the detectability of the given plant.

Lemma 4. Plant in (2.11) or pair (A,Cy) is detectable if and only if there exist Q̄1 and

Q̄2 which make the objective of the following problem zero.

min
Q̄1,Q̄2

∥∥∥∥∥∥∥I −
[
Q̄1 Q̄2

]z−1A− I

z−1Cy


∥∥∥∥∥∥∥

2

2

s.t. Q̄1 ∈ RH∞, Q̄2 ∈ RH∞.

(3.31)

Proof of lemma 4 can be found at appendix A.4.

In this section, we have formulated necessary and sufficient stabilizability and detectabil-

ity conditions as H2 problems. Provided problems can be solved using existing H2 problem

solution techniques to have a solution in infinite dimensional space.

3.3.2 Stabilizability and Detectability Conditions in Reduced Number of Vari-

able

In this section, we will show that stabilizability and detectability problems given in

corollary 3 and corollary 4 can be formulated with reduced number of variables benefiting

orthogonal spaces of Bu and Cy.

Corollary 4. Let plant P be as given in 2.11. Let Bu be such that null space of BT
u is not

empty. Let LT be a concatenation of null space vectors of BT
u and define L := LTT . Plant P

or the pair (A,Bu) is stabilizable if and only if there exists a Q̂1 which makes the objective

of the following problem zero.

min
Q̂1

∥∥∥−LA+ L(z−1A− I)Q̂1

∥∥∥2

2

s.t. Q̂1 ∈ RH∞.
(3.32)

Proof of corollary 4 can be found in appendix A.5. It should be noted that for the case

of null space of BT
u is empty, given plant is trivially stabilizable.
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Corollary 5. Let plant P be as given in 2.11. Let Cy be such that null space of Cy is not

empty. Let R be a concatenation of null space vectors of Cy. Plant P or the pair (A,Cy) is

detectable if and only if there exists a Q̂1 which makes the objective of the following problem

zero.

min
Q̂1

∥∥∥−AR+ Q̂1(z−1A− I)R
∥∥∥2

2

s.t. Q̂1 ∈ RH∞.
(3.33)

Proof of corollary 5 can be found in appendix A.6. It should be noted that for the case

of null space of Cy is empty, given plant is trivially detectable.

Problems given in (3.32) and (3.33) are in the form of classical H2 problems and can be

solved using existing H2 problem solution methods to have a solution in infinite dimensional

space.

3.3.3 Dynamic State Feedback Controller and State Observer Problems

In this section, we will provide necessary and sufficient dynamic state-feedback controller

and state observer problems benefiting all stabilizing controller parametrization defined for

stably defined plants.

Let P̄f be defined as

P̄f =

[
z−1A z−1Bu

]
(3.34)

Bu z−1- - f - -
u(k) x(k)

i(k)

?

- A

Figure 3.3 Block diagram of P̄f

A stable feedback interconnection of dynamic state-feedback interconnection of F and

P22 = ss(A,Bu, Cy, 0) with Cy = I equivalently means a stable feedback interconnection
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of P̄f and F̄ =

Inx
F

. Benefiting this stably defined plant and its controller, next we will

show a necessary and sufficient problem to have a dynamic state-feedback controller.

Lemma 5. Let plant, P , be defined as in (2.11). There exists a casual dynamic state-

feedback controller of P , if and only if there exist casual Q̄1 and Q̄3 which make the objective

of the following problem zero.

min
Q̄1,Q̄3

∥∥∥∥∥∥∥I −
[
z−1A− I z−1Bu

]Q̄1

Q̄3


∥∥∥∥∥∥∥

2

2

s.t. Q̄1 ∈ RH∞, Q̄3 ∈ RH∞.

(3.35)

Moreover, let Q̄1 and Q̄3 be a solution to (3.35) such that its objective is zero, then a state

observer can be synthesized as F = Q̄3Q̄
−1
1 .

Proof of lemma 5 can be found in appendix A.7.

Now, we will demonstrate the problem to formulate the state-observer problem. Let P̄o

be defined as

P̄o =

 z−1A

z−1Cy

 (3.36)

z−1 Cy- - -
u(k) y(k)r

-A-
o(k)

Figure 3.4 Block diagram of P̄o

A stable feedback interconnection of dynamic state-feedback interconnection of L and

P22 = ss(A,Bu, Cy, 0) with Bu = Inx equivalently means a stable feedback interconnection

of P̄o and L̄ =

[
Inx L

]
. Benefiting this stably defined plant and its controller, next we

will state a necessary and sufficient problem to have a dynamic state observer.
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Lemma 6. Let plant be defined as in (2.11). There exists a casual dynamic state observer,

if and only if there exist casual Q̄1 and Q̄2 which make the objective of the following problem

zero.

min
Q̄1,Q̄2

∥∥∥∥∥∥∥I −
[
Q̄1 Q̄2

]z−1A− I

z−1Cy


∥∥∥∥∥∥∥

2

2

s.t. Q̄1 ∈ RH∞, Q̄2 ∈ RH∞.

(3.37)

Moreover, let Q̄1 and Q̄2 be a solution to (3.37) such that its objective is zero, then a state

observer can be synthesized as L = Q̄−1
1 Q̄2.

Proof of lemma 6 can found in appendix A.8.

In this section, we provided necessary and sufficient dynamic state-feedback and state

observer problems which are defined as classical H2 problems and can be solved using

existing methods to have a solution in infinite dimensional space.

3.3.4 Dynamic State-Feedback and State Observer Problems in Reduced Num-

ber of Variable

In this section, we will provide state-feedback controller and state observer problems in

reduced variables by regarding lemma 5 and 6 and orthogonal spaces of Bu and Cy.

Corollary 6. Let plant P be as given in 2.11. Let Bu be such that null space of BT
u is not

empty. Let LT be a concatenation of null space vectors of BT
u and define L := LTT . There

exists a casual dynamic state-feedback controller of P , if and only if there exists a casual

Q̂1 which makes the objective of the following problem zero.

min
Q̂1

∥∥∥−LA+ L(z−1A− I)Q̂1

∥∥∥2

2

s.t. Q̂1 ∈ RH∞.
(3.38)

Moreover, let Q̄3 = B†u(A− (z−1A− I)Q̂1), then state-feedback controller can be synthesized

as F = Q̄3(z−1Q̂1 − I)−1.
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Proof of corollary 6 can be found in appendix A.9. Corollary 6 provides a necessary and

sufficient problem to attain a dynamic state-feedback controller for the given plant.

Remark 3. In the case of null space of BT
u is empty, dynamic state feedback controllers

of P can be trivially parameterized with a stable Q̂1 ∈ RHnx×nx∞ as F = Q̄3(z−1Q̂1 − I)−1

wherein Q̄3 = B†u(A− (z−1A− I)Q̂1).

Corollary 7. Let plant P be as given in 2.11. Let Cy be such that null space of Cy is not

empty. Let R be a concatenation of null space vectors of Cy. There exists a casual dynamic

state observer of P , if and only if there exists a casual Q̂1 which makes the objective of the

following problem zero.

min
Q̂1

∥∥∥−AR+ Q̂1(z−1A− I)R
∥∥∥2

2

s.t. Q̂1 ∈ RH∞.
(3.39)

Moreover, let Q̄2 = (A − Q̂1(z−1A − I))C†y, then state observer can be synthesized as L =

(z−1Q̂1 − I)−1Q̄2.

Proof of corollary 7 can be found in appendix A.10. Corollary 7 provides a necessary

and sufficient problem to attain a dynamic state observer for the given plant.

Remark 4. In the case of null space of Cy is empty, dynamic state observers of P can

be trivially parameterized with stable Q̂1 ∈ RHnx×nx∞ as L = (z−1Q̂1 − I)−1Q̄2 wherein

Q̄2 = (A− Q̂1(z−1A− I))C†y.

Problems defined in corollaries 6 and 7 include fewer variables with respect to state

feedback controller and state observer problems defined in lemmas 5 and 6. Moreover,

problems defined in (3.38) and (3.39) are defined in the form ofH2 problem and can be solved

using existing solution methods of H2 problem to have a solution in infinite dimensional

space. Therefore, defined dynamic state-feedback controller and state observer problems

constitute necessary and sufficiency problems to attain a dynamic state feedback controller

and state observer.
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3.4 Conclusion

In this chapter, we have obtained all stabilizing controller parametrization for any sta-

ble/unstable plant, by benefiting all stabilizing controller parametrization defined for stable

plants, wherein constraints on Youla parameter are defined with equality constraints. For-

mulated all stabilizing controller parametrization does not necessitate to have a doubly

coprime factorization or it does not require to have an initial controller.

Moreover, in this chapter we provided necessary and sufficient problems for the follow-

ings:

� Stabilizability test problem,

� Detectability test problem,

� Dynamic state-feedback controller problem,

� Dynamic state observer problem,

� Output feedback controller problem.

Stabilizability test problem, detectability test problem, dynamic state-feedback con-

troller problem, dynamic output feedback problem are formulated in the form of H2 prob-

lem, i.e. in the form of ||H+UQV ||22 for some H, U and V wherein Q is variable. Therefore,

one can obtain a solution in infinite dimensional space by solving existing solution methods

of H2 problem. Furthermore, we have provided a two-step solution procedure for output

feedback controller problem to have a solution in infinite dimensional space.

Moreover, alternative controller problems can be found in appendix B.3 which are suf-

ficent controller problems which do not require to use vectorization method and can be

solved in one step using existing solution methods of H2 problem.

It should be noted that derivation of these controllers stands as base for the characteri-

zation of network distributed controller problems that will be introduced in next chapters.
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CHAPTER 4. NETWORK IMPLEMENTABLE CONTROLLERS

By network implementable controllers, we refer to controllers with network imple-

mentable state-space realizations. Moreover, we call a controller as network realizable if

there exists a network implementable state-space realization of it over the given network.

In this chapter, we will define the set of network realizable controllers and will provide

a method to obtain a network implementable state space realization of a given network

realizable controller.

We first introduce a doubly coprime factorization of K̄ := blkdiag(Inx ,K) where K

is a controller for the given plant P with order nx. This doubly coprime factorization

allows us to have left and right coprimes belong to stable network realizable set when K

inherits the sparsity and delay constraints of the given network, i.e. K ∈ T(G,Pu,Py).

We are able to obtain network implementable state-space realization of K ∈ T(G,Pu,Py),

benefiting network implementable state-space realizations of coprimes of K̄, since there

exists a method to obtain network implementable state-space realization of a given stable

network realizable system.

4.1 Doubly Coprime Factorization of Controllers

In this section, we will show that for a given controller, K, of a plant P with order nx,

blkdiag(Inx ,K) admits a doubly coprime factorization.

Since P̄22 given in (3.3) is stable, one can parametrize a controller K̄ of P̄22 with a

stable Q̄ as K̄ = −Q̄(I − P̄22Q̄)−1. Thereupon, for a given controller K of P22, one can

obtain a stable Q̄ as Q̄∗ = −K̄(I − P̄22K̄)−1 wherein K̄ = blkdiag(Inx ,K), which allows
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one to re-derive K̄ as K̄∗ = −Q̄∗(I − P̄22Q̄
∗)−1 such that K̄∗ = blkdiag(Inx ,K). This

parametrization allows us to have right coprime factors of K̄ = blkdiag(Inx ,K) which are

Q̄ and I− P̄22Q̄. This knowledge allows us to state coprime factors of K̄ as in the following

lemma.

Lemma 7. Let K be a stabilizing controller for P22 = ss(A,Bu, Cy, 0) and nx be the order

of P22. Let K̄ be defined as

K̄ =

Inx 0

0 K

 . (4.1)

Define Z := (zI −A−BuKCy) and let set of maps V , W , V̄ and W̄ be defined as follows

V = V̄ =

I +AZ−1 AZ−1BuK

KCyZ
−1 K(I − P22K)−1

 ,
W =

I +AZ−1 AZ−1BuK

CyZ
−1 (I − P22K)−1

 ,
W̄ =

I +AZ−1 AZ−1Bu

KCyZ
−1 (I −KP22)−1

 .
(4.2)

Then, a doubly-coprime factorization of K̄ can be represented as K̄ = VW−1 = W̄−1V̄

satisfying

Φ =

 X̄ −Ȳ

−V̄ W̄


W Y

V X

 =

I 0

0 I

 (4.3)

with stable X, Y , X̄, Ȳ :

X = X̄ = I,

Y = Ȳ =

 z−1A z−1ABu

z−1Cy z−1CyBu

 . (4.4)

Proof of lemma 7 can be found in appendix A.11.

Provided coprime factors of K̄ = blkdiag(Inx ,K) allow us to parametrize K̄ with stable

systems which will further allow us to obtain network implementable controllers of given

network realizable controllers as it will be shown in next section.
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4.2 Network Implementable Controllers

In this section, we will show that benefiting doubly-coprime factorization of controllers,

we can obtain network implementable state-space realizations of controllers which inherits

the sparsity and delay structures of the given graph, i.e. K ∈ T(G,Pu,Py).

The following corollary allows us to parametrize a given controller using two stable

systems.

Corollary 8. For a given plant P22 = ss(A,Bu, Cy, 0), let P̄22 and V be defined as in (3.3)

and (4.2), respectively. Then, controller K of the given plant can be parametrized as

K =

[
0 Inu

]
V (I + P̄22V )−1

 0

Iny

 . (4.5)

Proof. This corollary is direct result of lemma 7 and the equality W = (I + P̄22V ).

In the following lemma, we show that there exists a network implementable state-space

realization of a controller which inherits the sparsity and delay constraints of the given

network, i.e. K ∈ T(G,Pu,Py), of the given plant P22 = ss(A,Bu, Cy, 0) wherein A ∈

S(A(G),Px,Px), Bu ∈ S(I,Px,Pu) and Cy ∈ S(A(G),Py,Px).

Lemma 8. Let A ∈ S(A(G),Px,Px), Bu ∈ S(I,Px,Pu) and Cy ∈ S(A(G),Py,Px) be state-

space matrices of strictly proper plant P22, i.e. P22 = ss(A,Bu, Cy, 0), let nx, nu and ny be

number of states, inputs and outputs of the given plant, respectively. Let K ∈ T(G,Pu,Py)

be a controller of P22. Let Ṽ ∈ Ss(G2,PxV , [Px;Pu], [Px;Py]) be a network implementable

state-space realization of V defined in (4.2). Define a network implementable ˜̄P22 as

˜̄P22 = ss(0,

[
Inx Bu

]
,

A
Cy

 , 0). (4.6)

Then, a network implementable state-space realization of K ∈ T(G,Pu,Py), such that K̃ ∈

S(G,PxK ,Pu,Py), can be given as

K̃ =

[
0 Inu

]
Ṽ (I + ˜̄P22Ṽ )−1

 0

Iny

 . (4.7)
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Proof. For a givenK ∈ T(G,Pu,Py), V given in (4.4) belongs to set Ts(G2, [Px;Pu], [Px;Py]).

According to theorem 1, there exists a network implementable state-space realization of

V ∈ Ts(G2, [Px;Pu], [Px;Py]) and let Ṽ be a network implementable state-space realization

of V ∈ Ts(G2, [Px;Pu], [Px;Py]). Moreover, ˜̄P22 given in (4.6) is a network implementable

state-space realization of P̄22 given in (3.3a). Using corollary 8, we can parametrize the given

controller as in (4.5). Therefore, using network implementable state-space realizations Ṽ

and ˜̄P22, we can obtain a network-implementable controller, K̃, as in (4.7) equivalently, as

in the block diagram exists in figure 4.1.

Lemma 8 allows us to define the set of network implementable controllers and further-

more, it introduces a method to attain a network implementable state space realization

for the given structured controllers K ∈ T(G,Pu,Py). A block diagram of network imple-

mentable realization of controller K ∈ T(G,Pu,Py) can be given as in figure 4.1, wherein Ṽ

is a network implementable state-space realization of V defined in (4.2) and ˜̄P22 as in (4.6).

y +

-

[
0
Iny

]
˜̄P22

Ṽ- - e - - [0 Inu
] -

u

�

6

Figure 4.1 A block diagram for network realization of K.

Definition 9. (Network realizable controller) We call a controller K of P22 as network

realizable controller if there exists a network implementable state-space realization of it over

the given network G.

One can obtain a network implementable state-space realization of

V ∈ Ts(G2, [Px,Pu], [Px,Py]) using methods in [1], [19] (one can refer to appendix C.1 for

a review of method [1] and appendix C.2 for an example demonstration). Having network

implementable state-space realizations Ṽ and ˜̄P22, one can attain a network implementable
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controller K̃ ∈ S(G,PK ,Pu,Py) using the block diagram exists in figure 4.1. Therefore, a

controller K ∈ T(G,Pu,Py) of a given networked system P22 as in (2.11) can be called as

network realizable controller of P22.

Theorem 4. Let A ∈ S(A(G),Px,Px), Bu ∈ S(I,Px,Pu) and Cy ∈ S(A(G),Py,Px) be

state-space matrices of strictly proper plant P22, i.e. P22 = ss(A,Bu, Cy, 0). Let K ∈

T(G,Pu,Py) be a controller for P22. Then, K ∈ T(G,Pu,Py) is a network realizable con-

troller of P22.

Proof. Since, there exists a network implementable state-space realization of a controller

K ∈ T(G,Pu,Py) of defined plant P22 according to lemma 8, it follows that K is a network

realizable controller of P22.

Theorem 4 allows us to define the set of network realizable controllers. A necessary and

sufficient problem to attain a network realizable controller for the given networked plant

will be provided in the next chapter.

4.3 Conclusion

In this chapter, we have obtained a doubly coprime factorization of K̄ = blkdiag(I,K)

wherein K is a controller of the given plant. Moreover, an alternative doubly coprime fac-

torization of K̄ can be found in appendix B.4. When K inherits the sparsity and delay

constraints of the given network in z-domain, i.e. K ∈ T(G,Pu,Py), formulated coprime

factors of K̄ are stable network realizable systems. Hence, we are able to obtain network

implementable state-space realization of coprime factors K̄ benefiting existing network im-

plementable state-space realization technique shown in [1] for stable network realizable

systems (A review of network implementable state-space realization of stable network real-

izable systems has been provided in appendix C.1). By obtaining network implementable

state-space realizations of coprime factors, we are able to obtain a network implementable

state space realization of K̄ and by proper mapping on K̄, we are able to obtain a network
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implementable state-space realization of K. A demonstration of network implementable

state-space realization of a network realizable controller can be found in appendix C.2.

Since, we are able to obtain network implementable state-space realizations of controllers

which inherits the delay and sparsity constraints of the given network, we are able to define

these controllers as network realizable controllers as given in theorem 4.

Obtained network implementable state-space realization method for network realizable

controllers allows us to obtain network implementable controllers with reduced order with

respect to existing realization methods. Comparisons with existing realization methods has

been provided in numerical example sections 8.1 and 8.2.
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CHAPTER 5. NETWORK REALIZABLE CONTROLLER PROBLEM

In this chapter, we obtain all stabilizing network realizable controller parametrization

by regarding all stabilizing controller parametrization obtained in chapter 3. Moreover,

we state a necessary and sufficient problem to have a network realizable controller which

is a constrained problem. Afterwards, we provide its equivalent unconstrained network

realizable controller problem which can solved using standard techniques to have a solution

in infinite dimensional space.

5.1 All Stabilizing Network Realizable Controller Parametrization

In this section, we will provide all stabilizing network realizable controller parametriza-

tion benefiting lemma 2.

Lemma 9. Let the networked plant, P , be given as in (2.11), such that P22 ∈ S(G,Px,Py,Pu)

and let Q̄ :=

Q1 Q2

Q3 Q4

. All stabilizing network realizable controllers of P , K, such that

K(z) ∈ T(G,Pu,Py) can be parametrized as K = −Q4(I − P22Q4)−1 where Q̄ satisfies

equality constraints in (3.4) such that Q4(z) ∈ Ts(G,Pu,Py) and Q̄ ∈ RH∞.

Proof. It is proven in lemma 2 that for a Q̄ ∈ RH∞ satisfying (3.4), K = −Q4(I −

P22Q4)−1 parametrizes all stabilizing controllers. Next, we will show that K(z) belongs to

set T(G,Pu,Py) if and only if we have Q4(z) ∈ Ts(G,Pu,Py).

⇒ First assume Q4 is stable and network realizable, i.e. Q4(z) ∈ Ts(G,Pu,Py), then we

have K = −Q4(I − P22Q4)−1 such that K(z) ∈ T(G,Pu,Py) which is a network realizable

controller according to theorem 4.
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⇐ Now assume, we have K(z) ∈ T(G,Pu,Py). Let K̄∗ = blkdiag(Inx ,K). Since we

have P22 ∈ S(G,Px,Py,Pu), P̄22 defined in (3.3a) belongs to set Ts(Ḡ, [Px;Py], [Px;Pu]).

Therefore, we have Q̄∗ = −K̄∗(I − P̄22K̄
∗)−1 such that Q̄∗(z) ∈ Ts(Ḡ, [Px,Pu], [Px,Py])

when K(z) ∈ T(G,Pu,Py). Therefore, we have Q∗4(z) =

[
0 Inu

]
Q̄∗(z)

 0

Iny

 ∈
Ts(G,Pu,Py).

Lemma 9 shows that one can parametrize all stabilizing network realizable controllers

with a stable Q̄ satisfying equality constraints 3.4 with an additional structural constraint

on Q4 as Q4 ∈ Ts(G,Pu,Py).

5.2 Network Realizable Controller Problem

In this section, we will first state a necessary and sufficient network realizable controller

problem. Afterwards, we will derive its equivalent unconstrained problem which can be

solved with existing solution methods of H2 problem to have a solution in infinite dimen-

sional space.

Theorem 5. Let plant, P , be given as in (2.11) such that P22 ∈ S(G,Px,Py,Pu). There ex-

ists a network realizable internally stabilizing controller K such that

K(z) ∈ T(G,Pu,Py), if and only if there exist Q̃1 and Q4 which make the objective of

following problem zero.

min
Q̃1,Q4

∥∥∥A2(z−1A− I)− (z−1A− I)Q̃1(z−1A− I) +ABuQ4Cy

∥∥∥2

2

s.t. Q̃1 ∈ RH∞, Q4(z) ∈ Ts(G,Pu,Py)
(5.1)

Moreover, let Q̃∗1 and Q∗4 be solution of (5.1) such that its objective is zero, then a net-

work realizable controller can be constructed as K = −Q∗4(I − P22Q
∗
4)−1 such that K(z) ∈

T(G,Pu,Py).

Proof. As it is proved in the proof of corollary 2, equality constraints in (3.4) can be equiv-

alently solved with the equality constraint in (3.16). Therefore, regarding equivalent con-
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straint sets (3.4) and (3.16), and lemma 9, there exists a network realizable controller if and

only if there exist Q∗1 and Q∗4 which make objective of problem 5.1 zero and corresponding

network realizable controller can be given as K = −Q∗4(I − P22Q
∗
4)−1.

Problem defined in (5.1) is a necessary and sufficient problem, however it is a constrained

problem, therefore, classical H2 solution methods cannot be applied. Next, we will benefit

from vectorization method to define an equivalent unconstrained problem which is in the

form of H2 problem wherein a solution can be obtained in infinite dimensional space using

existing solution methods.

Let vec(Q̃1(z)) = W̄1(z) and vec(Q4(z)) = S4(z)W̄4(z) be the vectorized elements of

Q̄1 and Q4 where W̄1(z) ∈ RHn
2
x×1
∞ , W̄4(z) ∈ RHa×1

∞ for some a and S4(z) ∈ RHnuny×a∞

contains the delay and sparsity constraints imposed by the set Ts(G,Pu,Py) (for a demon-

stration of how to obtain systems S4(z) and W̄4(z) one can refer to section B.5). Benefiting

results of vectorization, we write an equivalent of problem (5.1) as in the following

min
W̄1,W̄4

∥∥∥∥∥∥∥A2(z−1A− I)−
[
(z−1A− I)T ⊗ (z−1A− I) −(CTy ⊗ABu)S4

]W̄1

W̄4


∥∥∥∥∥∥∥

2

2

s.t. W̄1 ∈ RH∞, W̄4 ∈ RH∞.

(5.2)

Let W̄ ∗1 and W̄ ∗4 be solution of problem (5.2), such that its objective is zero, then one

can obtain Q∗4 by Q∗4 = vec(S4W̄
∗
4 )−1 and optimal controller as K∗ = −Q∗4(I − P22Q

∗
4)−1

wherein K(z) ∈ T(G,Pu,Py). After obtaining a network realizable controller, we obtain a

network implementable controller using the network implementable state-space realization

technique formulated in section 4.2, i.e. using block diagram in figure 4.1 where Ṽ is network

implementable state-space realization of V which is defined in (4.2) (V is function of K∗.)

and ˜̄P22 is as defined in (4.6).

Problem (5.2) is an unconstrained necessary and sufficient network realizable controller

problem and it is in the form of H2 problem. Therefore, problem (5.2) can be solved using

existing solution techniques of H2 problem to attain a solution in infinite-dimensional space.

Hence, if there exists a network realizable controller, one can obtain it by solving (5.2).
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Moreover, using the network realizable controller obtained in this section, one can solve

the optimal network realizable controller problem in theorem 9 to obtain a optimal network

realizable controller. Once the optimal network realizable controller problem in theorem

9 is solved, then one can form an optimal network realizable controller as in (7.9). After

obtaining an optimal network realizable controller, one can obtain a network implementable

controller using the network implementable state-space realization technique formulated in

section 4.2.

5.3 Conclusion

In this chapter, first, we obtained all stabilizing network realizable controller parametriza-

tion, then we provided necessary and sufficient network realizable controller problem.

By benefiting vectorization method, we defined a network realizable control problem

in the form of unconstrained H2 problem wherein a solution can be obtained in infinite

dimensional space benefiting existing solution methods of H2 problem. After obtaining a

network realizable controller, we obtain a network implementable controller using the net-

work implementable state-space realization method formulated in section 4.2. Moreover, a

demonstration of how to obtain a network implementable state-space realization of network

realizable controller can be found in appendix C.2.
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CHAPTER 6. OPTIMAL NETWORK REALIZABLE CONTROLLER

PROBLEM

In literature, optimal controller problem have been studied with sufficiency conditions.

In [37], optimal network realizable controller problem has been formulated as a function

of static sparse state feedback and static state observer. However, methods to find static

sparse state feedback and static state observer have been provided with sufficient problems.

Moreover, in the work of [43], optimal network distributed controller problem has been

defined with infinite dimensional constraints with not know a priory finite support solution.

In this section, we will define infinite dimensional optimal network distributed controller

problem which can be solved benefiting existing solution methods of H2 problem.

We will first provide a model matching problem, then we will formulate optimal network

realizable controller problem. Afterwards, we will formulate an unconstrained optimal net-

work realizable controller problem which can be solved benefiting existing solution methods

to have solution in infinite dimensional space. The provided optimal network realizable con-

troller problem allows one to solve and obtain a solution in infinite dimensional space and

does not necessitate priory computations such as doubly-coprime factorization of plant or an

initial controller unlike optimal controller problems involve well-known Youla parametriza-

tion.

6.1 Model Matching Problem

In this section, we formulate a model matching problem affine in Q̄ to be able to define

a convex optimal controller problem.
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We had formulated P̄22 in the previous chapters. Now, generalized congruent plant P̄

can be given as

P̄ =

 P̄11 P̄12

P̄21 P̄22



=


z−1CzBw +Dzw z−1Cz z−1CzBu +Dzu

z−1ABw z−1A z−1ABu

z−1CyBw +Dyw z−1Cy z−1CyBu


, (6.1)

then feedback interconnection of P̄ and K̄ is equivalent to feedback interconnection of P

and K. Moreover, a block diagram of P̄ can be found in figure 6.1.

Bu z−1 Cy-r - f - - - f -u(k) y(k)

i(k)

? r

- A -
o(k)

w(k)
-r Bw

6

- Cz
- f -z(k)

�� - Dyw

r

��
��

?

�� - Dzu
��

?

- Dzw

6

Figure 6.1 Block diagram of P̄ .

Input to output system from w to z can be given as

Tzw = P̄11 + P̄12K̄(I − P̄22K̄)−1P̄21. (6.2)

Since, for a controller parametrization K̄ = −Q̄(I − P̄22Q̄)−1 we have Q̄ = −K̄(I −

P̄22K̄)−1, closed loop parametrization in (6.2) can be given as

Tzw = P̄11 − P̄12Q̄P̄21. (6.3)

Input to output map given in (6.3) is affine in Q̄ which will allow us to define the optimal

controller problem convex in Youla parameter.
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6.2 Optimal Network Realizable Controller Problem

In this section, we define a necessary and sufficient problem to obtain optimal network

realizable controllers benefiting the network realizable controller problem defined in previous

chapter.

Theorem 6. Let plant, P , be given as in (2.11) such that P22 ∈ S(G,Px,Py,Pu). Let

P̄11, P̄12 and P̄21 be defined as in (6.1). Let Q̄ :=

Q1 Q2

Q3 Q4

. Let Q̄∗ be a solution of the

following problem,

min
Q̄

||P̄11 − P̄12Q̄P̄21||

s.t.

∥∥∥∥[I 0

]
−
[
z−1A− I z−1ABu

]
Q̄

∥∥∥∥+

∥∥∥∥∥∥∥
I

0

− Q̄
z−1A− I

z−1Cy


∥∥∥∥∥∥∥ = 0,

Q̄ ∈ RH∞, Q4(z) ∈ Ts(G,Pu,Py)

(6.4)

then optimal network realizable controller K such that K(z) ∈ T(G,Pu,Py) can be given as

K∗ = −Q∗4(I − P22Q
∗
4)−1.

Proof. Proof follows lemma 9.

Problem (6.4) is necessary and sufficient optimal controller problem. However, it can

not be solved in infinite dimensional space with the existing solution methods. In the

next section, we define an unconstrained optimal controller problem which can be solved in

infinite dimensional space.

6.2.1 Unconstrained Optimal Network Realizable Controller Problem

As it can be noticed from problem (6.4), it cannot be solved in infinite dimensional space

using existing solution methods to obtain optimal controller due to equality constraint and,

structural and sparsity constraints introduced on Q4 by the space Ts(G,Pu,Py). Next,

we introduce a Lagrange variable and benefit from the vectorization method to be able to

define an unconstrained optimal network realizable controller problem.
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Benefiting corollary 1, problem given in (6.4) can be formulated as in the following with

a Lagrange variable β, wherein β is big enough, so that equality constraints in problem 6.4

is satisfied.

min
Q̃1

||P̄11 − P̄12Q̄P̄21||

+ β

∥∥∥∥[I 0

]
−
[
z−1A− I z−1ABu

]
Q̄

∥∥∥∥+ β
∥∥Q3(z−1A− I) + z−1Q4Cy

∥∥
s.t. Q̄ ∈ RH∞, Q4(z) ∈ Ts(G,Pu,Py).

(6.5)

We can append sum of norms into rows of one minimization function as follows

min
Q̄

∥∥∥∥∥∥∥∥∥∥∥∥∥

P̄11 − P̄12Q̄P̄21

β(I − (z−1A− I)Q1 − z−1ABuQ3)

β(−(z−1A− I)Q2 − z−1ABuQ4)

β(−Q3(z−1A− I)− z−1Q4Cy)

∥∥∥∥∥∥∥∥∥∥∥∥∥
s.t. Q̄ ∈ RH∞.

(6.6)

Let Ū11 = z−2(ABw)T ⊗ Cz, Ū12 = z−1(z−1CyBw + Dyw)T ⊗ Cz, Ū13 = z−1(ABw)T ⊗

(z−1CzBu + Dzu), Ū14 = (z−1CyBw + Dyw)T ⊗ (z−1CzBu + Dzu) and ZA = z−1A − I.

Let vec(Q4(z)) = S4(z)W̄4(z) be the vectorized element of Q4 where W̄4(z) ∈ RHa×1
∞ and

S4(z) contains the delay and sparsity constraints imposed by the set T(G,Py,Pu) (For a

demonstration of how to obtain systems S4(z) and W̄4(z) one can refer to section B.5.). Let

β be a Lagrange variable big enough. Benefiting a Lagrange multiplier and vectorization

method, we re-define the problem (6.4) as follows

min
W̄

∥∥∥∥∥∥∥∥∥∥∥∥∥



vec(z−1CzBw +Dzw)

βvec(I)

0

0


−



Ū11 Ū12 Ū13 Ū14

βI ⊗ ZA 0 z−1βI ⊗ (ABu) 0

0 βI ⊗ ZA 0 z−1βI ⊗ (ABu)

0 0 βZTA ⊗ I z−1βCTy ⊗ I





W̄1

W̄2

W̄3

W̄4



∥∥∥∥∥∥∥∥∥∥∥∥∥
s.t. Q̄ ∈ RH∞.

(6.7)
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Problem (6.7) can be solved in infinite dimensional space using existing solution methods

of H2 problem to have an H2 optimal network realizable controller. For existing solution

techniques of H2 problem, one may refer to [4], [5]. Moreover, provided optimal controller

problem can be used to obtain `1 optimal network realizable controller using `1 problem

solution technique introduced in [17].

Let W̄ ∗4 be a solution of problem (6.7). By applying de-vectorization process, we obtain

Q4 as Q∗4 := vec−1(S4W̄
∗
4 ), let the solution be such that equality constraint in problem

(6.4) is satisfied, then an optimal network realizable controller can be found by K∗ =

−Q∗4(I − P22Q
∗
4)−1 wherein K(z) ∈ T(G,Pu,Py). After obtaining a network realizable

controller, we obtain a network implementable controller using the network implementable

state-space realization technique formulated in section 4.2, i.e. using block diagram in figure

4.1 where Ṽ is network implementable state-space realization of V which is defined in (4.2)

(V is function of K∗.) and ˜̄P22 is as defined in (4.6).

Remark 5. If a solution to (6.7) is not satisfying the equality constraint in problem (6.4),

one may increase Lagrange multiplier β to satisfy the constraint with a negligible error.

6.2.2 Optimal Network Realizable Control Problem in Reduced Variables

In this section, we define a necessary and sufficient optimal network realizable controller

in reduced variables.

Benefiting theorem 5, we define an optimal network realizable problem in reduced vari-

able as in the following corollary.

Corollary 9. Let plant, P , be given as in (2.11) such that P22 ∈ S(G,Px,Py,Pu). Let A,

Bu and Cy be such that ABu has full column rank and Cy has full row rank. Let P̄11, P̄12

and P̄21 be defined as in (6.1), P̄Q1
11 , P̄Q1

12 , and P̄Q1
21 be defined as in the following
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P̄Q1
11 :=

 −I − z−1A z−1A2C†y

z−1(ABu)†A2 −(ABu)†A2(z−1A− I)C†y

 ,
P̄Q1

12 :=

 z−1I

−(ABu)†(z−1A− I)

 , P̄Q1
21 :=

[
z−1I −(z−1A− I)C†y

]
.

(6.8)

Let Q̃∗1 and Q∗4 be a solution of the following problem,

min
Q̃1,Q4

||P̄11 − P̄12P̄
Q1
11 P̄21 − P̄12P̄

Q1
12 Q̃1P̄

Q1
21 P̄21||

s.t.
∥∥∥A2(z−1A− I)− (z−1A− I)Q̃1(z−1A− I) +ABuQ4Cy

∥∥∥ = 0,

Q̃1 ∈ RH∞, Q4(z) ∈ Ts(G,Pu,Py).

(6.9)

then optimal network realizable controller K such that K(z) ∈ T(G,Pu,Py) can be given as

K∗ = −Q∗4(I − P22Q
∗
4)−1.

Proof. Using equation (3.12a) and Q1 = −I − z−1A+ z−2Q̃1, we obtain Q2 in terms of Q̃1

as follows

Q2 = z−1(A2 − Q̃1(z−1A− I))C†y. (6.10)

Furthermore, using (3.7a) and Q1 = −I − z−1A + z−2Q̃1, we obtain Q3 in terms of Q̃1 as

follows

Q3 = z−1(ABu)†(A2 − (z−1A− I)Q̃1). (6.11)

Using (3.17), Q4 can be defined in terms of Q̃1 as follows

Q4 = (ABu)†(−A2(z−1A− I) + (z−1A− I)Q̃1(z−1A− I))C†y. (6.12)

Using (6.10), (6.11) and (6.12), we can define Q̄ in terms of Q̃1 as follows

Q̄ =

 −I − z−1A+ z−2AQ̃1 z−1(A2 − Q̃1Pc)C
†
y

z−1(ABu)†(A2 − PcQ̃1) B†u(−A2Pc + PcQ̃1Pc)C
†
y


= P̄Q1

11 + P̄Q1
12 Q̃1P̄

Q1
21

(6.13)

Regarding theorem 5, we can put the constraint to have a network realizable controller as

zero norm of its objective with constraints Q̃1 ∈ RH∞ and Q4 ∈ Ts(G,Pu,Py), wherein
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for such Q4, controller can be synthesized as K = −Q4(I − P22Q4)−1 such that K(z) ∈

T(G,Pu,Py) and results follow.

Remark 6. It should be noted that when ABu does not have column rank deficiency or

Cy does not have row rank deficiency, problem (6.9) allows one to obtain optimal network

realizable controller. Otherwise, due to pseudo inverse usage, one may obtain sub-optimal

results. Therefore, one may benefit from problem defined in (6.4) to obtain an optimal

network realizable controller when there is column rank deficiency in ABu or row rank

deficiency in Cy.

Now, benefiting a Lagrange multiplier we can write optimal network realizable controller

problem as follows

min
Q̃1,Q4

||P̄11 − P̄12P̄
Q1
11 P̄21 − P̄12P̄

Q1
12 Q̃1P̄

Q1
21 P̄21||+

β
∥∥∥A2(z−1A− I)− (z−1A− I)Q̃1(z−1A− I) +ABuQ4Cy

∥∥∥
s.t. Q̃1 ∈ RH∞, Q4(z) ∈ Ts(G,Pu,Py).

(6.14)

Lagrange multiplier β should be chosen high enough to satisfy the constraint∥∥∥A2(z−1A− I)− (z−1A− I)Q̃1(z−1A− I) +ABuQ4Cy

∥∥∥ = 0. (6.15)

Moreover, problem (6.14) still can not be solved using existing solution methods to

have a solution in infinite dimensional space due to structural constraint on Q4. There-

fore, we benefit vectorization method to define an unconstrained optimal network realizable

controller problem.

Let vec(Q̃1(z)) = W̄1(z) and vec(Q4(z)) = S4(z)W̄4(z) be the vectorized elements of

Q̃1 and Q4 where W̄1(z) ∈ RHn
2
x×1
∞ , W̄4(z) ∈ RHa×1

∞ and S4(z) contains the delay and

sparsity constraints imposed by the set T(G,Py,Pu) (For a demonstration of how to obtain

systems S4(z) and W̄4(z) one can refer to section B.5.). Let ZA = z−1A − I. Now, we

can define the vectorized form of problem (6.14) as in the following problem which is an

unconstrained problem and can be solved in infinite-dimensional space.
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min
W̄1,W̄4

∥∥∥∥∥∥∥
vec(P̄11 − P̄12P̄

Q1
11 P̄21)

βA2(z−1A− I)

−
(P̄Q1

21 P̄21)T ⊗ (P̄12P̄
Q1
12 ) 0

βZTA ⊗ ZA −β(CTy ⊗ABu)S4


W̄1

W̄4


∥∥∥∥∥∥∥

s.t. W̄1 ∈ RH∞, W̄4 ∈ RH∞
(6.16)

Let W̄ ∗4 ∈ RH∞ be the solution to problem (6.16) such that∥∥∥∥∥∥∥A2(z−1A− I)−
[
ZTA ⊗ ZA −(CTy ⊗ABu)S4

]W̄1

W̄4


∥∥∥∥∥∥∥ = 0 (6.17)

is satisfied, let Q∗4 = vec(S4W̄
∗
4 )−1 and then one can obtain an optimal realizable controller

by K∗ = −Q∗4(I − P22Q
∗
4)−1 such that K(z) ∈ T(G,Pu,Py). After obtaining a network

realizable controller, we obtain a network implementable controller using the network im-

plementable state-space realization technique formulated in section 4.2, i.e. using block

diagram in figure 4.1 where Ṽ is network implementable state-space realization of V which

is defined in (4.2) (V is function of K∗.) and ˜̄P22 is as defined in (4.6).

It should be noted that in order to obtain the internally-stabilizing controller, (6.17)

need to be satisfied. Since (6.17) is a hard constraint for problem (6.16), β need to be

chosen big enough.

Problem (6.16) can be solved in infinite dimensional space using existing solution meth-

ods ofH2 problem to have anH2 optimal network realizable controller. For existing solution

techniques of H2 problem, one may refer to [4], [5]. Moreover, provided optimal controller

problem can be used to obtain `1 optimal network realizable controller using `1 problem

solution technique introduced in [17].

6.3 Conclusion

In this chapter, we have defined a necessary and sufficient optimal network realizable

controller problem which is a constrained optimization problem. Benefiting a Lagrange
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multiplier and vectorization method, we defined optimal network realizable controller prob-

lem in the form of unconstrained H2 optimal problem wherein a solution can be obtained

in infinite dimensional space benefiting existing solution techniques of H2 problem. For

existing solution techniques of H2 problem, one may refer to [4], [5]. Moreover, provided

optimal controller problem can be used to obtain `1 optimal network realizable controller

using `1 problem solution technique introduced in [17].

After obtaining an optimal network realizable controller, one can obtain a network

implementable state-space realization benefiting the network implementable state-space re-

alization technique formulated in section 4.2. A demonstration of how to obtain a network

implementable controller can be found in appendix C.2. We provided a five-node and a

six-node numerical examples in sections 8.1 and 8.2 wherein optimal network realizable

controller problem formulated in this chapter has been solved and network implementable

controller obtained using the network implementable state-space realization method in sec-

tion 4.2. Moreover, we provided comparisons with other existing methods on those provided

numerical example sections. Regarding the results of optimal network implementable con-

troller orders obtained in sections 8.1 and 8.2, one can observe the efficiency of the optimal

network realizable controller problem obtained in this chapter.
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CHAPTER 7. SPECIAL RESULTS FOR STRONGLY CONNECTED

SYSTEMS

The result of this section was obtained before those of the previous sections which are

more general. Here, we decided to add them at this stage as they apply to the special case

where a network realizable controller is given or can be easily found. This is the case for

example of strongly connected networks.

In this chapter, we provide an alternative all stabilizing network realizable controller

parametrization. We first review the existing all stabilizing controller parametrization which

is a function of an initial controller. Afterwards, we provide all stabilizing network realizable

controller parametrization as a function of any network realizable controller K0 in the form

of −lft(K0, lft(J,Q)) wherein J is a stable system as a function of K0 and Q is the Youla

parameter. We propose network realizable controllers in the form of delayed controllers for

strongly connected networks. This allows us to parametrize all stabilizing network realizable

controllers of strongly connected networks. Besides, one can benefit the network realizable

controller problem formulated in chapter 5 to have an initial network realizable controller

to parametrize all stabilizing network realizable controllers.

Moreover, we obtain a model matching problem and define an optimal network realiz-

able controller problem benefiting aforementioned all stabilizing controller parametrization.

After solving optimal network realizable controller problem, one can obtain a network im-

plementable state-space realization of it in two ways: 1) Obtain network implementable

realization of K0, J and Q and synthesize the optimal network implementable controller as

−lft(K̃0, lft(J̃ , Q̃)) wherein K̃0, J̃ and Q̃ are network implementable state space realization
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of K0, J and Q (K̃0 can be obtained as in section 4.2.). 2) First, obtain the optimal network

realizable controller as −lft(K0, lft(J,Q)), then obtain a network implementable state-space

realization of this optimal controller benefiting the network implementable state-space re-

alization technique formulated in section 4.2.

7.1 An Overview on Optimal Network Realizable Controllers

The approach we have proposed in the previous chapters provides a unified general

and efficient way to obtain optimal network realizable controllers directly with network

realizable variables. Most of previous efforts like [28], [37] require an initial structured

controller to be found to solve optimal network realizable controller problem. In [28], an

initial network realizable controller was needed. Extension of this approach would need: 1)

a necessary and sufficient problem to obtain an initial network realizable controller, K0, 2)

a network implementable realization of K0, 3) a convenient parametrization of all network

realizable K’s like K = lft(J,Q) where J is network realizable as a function of K0. As

it will be shown in the following sections, we are able to obtain all stabilizing controller

parametrization as −lft(K0, lft(J,Q)). So that, once the optimal network realizable con-

troller problem is solved for a network realizable Q, optimal network implementable con-

troller can be obtained by obtaining network implementable realizations of K0, J and Q.

Moreover, using the result of chapter 4, we can omit the step 2 (a network implementable

realization of K0) and we can avoid to derive a realization of the initial stabilizing controller,

since we can obtain a network implementable controller after synthesizing the optimal net-

work realizable controller.

Obtaining an initial network realizable controller can be found using the network real-

izable model based controller (MBC) as proposed by [29] wherein a network implementable

realization technique of this MBC is also provided or using the network realizable controller

problem proposed in chapter 5. There are also cases like the strongly connected networks

where obtaining such controller is reasonably straightforward as shown later.
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7.2 A Review on All Stabilizing Controllers as a Function of an Initial

Controller

Herein, we review the all stabilizing controllers defined as a function of output feedback

controllers following [27], [28].

Let K0 be a stabilizing controller for the plant given in (2.11). It is shown in [40] that

parallel plants, P and K0, admit a doubly coprime factorization. Let the maps N1, D1, N̄1

and D̄1 be defined as follows

N1 =

 K0(I − P22K0)−1 K0P22(I −K0P22)−1

−P22K0(I − P22K0)−1 −P22(I −K0P22)−1

 ,
D1 =

 (I − P22K0)−1 P22(I −K0P22)−1

K0(I − P22K0)−1 (I −K0P22)−1

 ,
D̄1 =

 (I −K0P22)−1 −K0(I − P22K0)−1

−P22(I −K0P22)−1 (I − P22K0)−1

 ,
N̄1 = N1.

(7.1)

Then, a doubly coprime factorization of P1 = blkdiag(K0,−P22) can be given as P1 =

N1D
−1
1 = D̄−1

1 N̄1 satisfying  X̄1 −Ȳ1

−N̄1 D̄1


D1 Y1

N1 X1

 = I, (7.2)

with stable X1, Y1, X̄1, Ȳ1:

X1 = X̄1 = Iny+nu ,

Y1 = Ȳ1 =

 0 −Iny

Inu 0

 . (7.3)

Theorem 7. [27] Let P be stabilizable and detectable plant. If there exists a causal K0

such that lft(P,K0) is stable, then set of internally stabilizing all controllers for P1 =

blkdiag(K0,−P ) is parameterized by
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K1(Q) = (X̄1 −QN̄1)−1(Ȳ1 −QD̄1),

= (Y1 −D1Q)(X1 −N1Q)−1.

(7.4)

where X1, Y1, N1, D1, X̄1, Ȳ1, N̄1, D̄1 are as in (7.1) and Q is stable. Moreover, all

stabilizing controllers of P can be parametrized as lft(−K0,−K1(Q)).

−K1(Q)

−K0

P11 P12

P21 P22

-

�

-

-w

�

-z

K

Figure 7.1 Block diagram of K = lft(−K0,−K1(Q)) in feedback with plant P .

7.3 All Stabilizing Controller Re-parametrization

In this section, we re-parametrize the controller parametrization given in (7.4) to avoid

the inverse operation in it.

Lemma 10. Let N1, D1, N̄1, D̄1, X1, Y1, X̄1 and Ȳ1 be the elements of Bezout-identity as

in (7.2), then K1 = (Y1 − D1Q)(X1 − N1Q)−1 can be given as K1 = lft(J̄1, Q) with a J̄1

defined as follows

J̄1 =

Ȳ1 −I

I N1

 . (7.5)

Proof. Using the Bezout identity, one can obtain D1 = X̄1 + X̄−1Ȳ1N1. Moreover, Y1 can

be expressed as Y1 = X̄−1
1 Ȳ1X1. Using these, K1 can be re-parametrized as follows [5]
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K1 = (Y1 −D1Q)(X1 −N1Q)−1

= (X̄−1
1 Ȳ1X1 − (X̄1 + X̄−1Ȳ1N1)Q)(X1 −N1Q)−1

= X̄−1
1 (Ȳ1(X1 −N1Q)−Q)(X1 −N1Q)−1

= X̄−1
1 (Ȳ1 −Q(X1 −N1Q)−1)

= X̄−1
1 Ȳ1 − X̄−1

1 Q(I −X−1
1 N1Q)−1X−1

1 .

(7.6)

X̄−1
1 Ȳ1 − X̄−1

1 Q(I −X−1
1 N1Q)−1X−1

1 is nothing but lft(J̄1, Q) where J̄1 is defined as

J̄1 =

X̄−1
1 Ȳ1 −X̄−1

1

X−1
1 X−1

1 N1

 . (7.7)

Using definition of X1, X̄1 as in (7.3), we can simplify J̄1 as in (7.5).

−Q

−Ȳ1 I

−I −N1

−K0

P11 P12

P21 P22

-

-

�

�

-

-w

�

-z

K

Figure 7.2 Block diagram of K = lft(−K0, lft(−J̄1,−Q)) in feedback with plant P .

After solving model matching problem for a stable Q, one can construct a controller

using J̄1 defined as in (7.5) as follows

K = lft(−K0, lft(−J̄1,−Q)). (7.8)
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Block diagram of K defined in (7.8) can be seen in figure 7.2. All stabilizing controller

parametrization given in (7.8) allows one to avoid the inverse operation given all stabilizing

controller parametrization in (7.4).

7.4 All Stabilizing Network Realizable Controller Parametrization as a

Function of Network Realizable Controllers

Herein, all stabilizing network realizable controllers are proposed as a function of network

realizable controllers benefiting the all stabilizing controller parametrization given in (7.8).

Lemma 11. Let the networked plant, P , as given in (2.11) which has a strictly causal inter-

action over the given graph G. For a given network realizable controller K0 ∈ T(G,Pu,Py)

of P , the set of all stabilizing network realizable controllers for P can be parametrized with

Q ∈ Ts(G2, [Py;Pu], [Pu;Py]) as follow

K = lft(−K0, lft(−J̄1,−Q)) (7.9)

with J̄1 which is network realizable system defined as in (7.5) where X̄1, Ȳ1, X1 and N1 are

defined as in (7.1) as a function of K0 ∈ T(G,Pu,Py).

Proof. K given in (7.9) parametrizes all stabilizing controllers for a given K0 which stabilizes

P22 with Q ∈ RH∞ according to theorem 7 and in the view of lemma 10. Next, we show

that Q belongs to set Ts(G2, [Py;Pu], [Pu;Py]) for a controller belongs to set T(G,Pu,Py).

(“⊃”): For a given plant P22 ∈ T(G,Py,Pu) and K0 ∈ T(G,Pu,Py) which stabi-

lizes P22, we have J̄1 ∈ Ts(G4, [Py;Pu;Pu;Py], [Pu;Py;Py;Pu]) and when Q is in space

Ts(G2, [Py;Pu], [Pu;Py]), we obtain a network realizable controller with controller

parametrization K = lft(−K0, lft(−J̄1,−Q)) ∈ T(G,Pu,Py).

(“⊂”):

Since we have the parametrization K = lft(−K0, lft(−J̄1,−Q)), we can equivalently

parametrize K as K = lft(lft(−K0,−J̄1),−Q), let J = lft(−K0,−J̄1), then we have J ∈

T(G3, [Pu;Pu;Py], [Py;Py;Pu]), so controller can be parametrized as K = lft(J,−Q) where
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−Q

J-

-y

η

- u

�

ζ

K

Ĵ-

-ζ

u

- η

�

y

Figure 7.3 Block diagram of K = lft(J,−Q) and Q = −lft(Ĵ ,K).

Q is stable. Let Q = lft(−Ĵ ,−K). Using input-output relations given in figure 7.3, we

obtain the following relationship between J(z) and Ĵ(z)
0 Inu 0

0 0 Iny

Inu 0 0

 J(z)


0 0 Iny

Iny 0 0

0 Inu 0

 Ĵ(z) = I. (7.10)

Since we have J(z) in set T(G3, [Pu;Pu;Py], [Py;Py;Pu]), Ĵ(z) belongs to set

T(G3, [Py;Pu;Py], [Pu;Py;Pu]). Therefore, Q = lft(−Ĵ ,−K) belongs to set

T(G2, [Py;Pu], [Pu;Py]) for a controller, K, belongs to set T(G,Pu,Py). Since, Q ∈ RH∞,

it belongs to set Ts(G2, [Py;Pu], [Pu;Py]).

Next section provides an optimal network realizable controller problem benefiting the

network realizable controller parametrization given in lemma 11.

7.5 Network Realizable Controllers for Strongly Connected Networks

In this section, we show a necessary and sufficient problem to have a network realizable

controller for strongly connected networks.

As it is shown in chapter 4, if a controller inherits the sparsity and delay constraints

of a given graph in z-domain, then it has a network-implementable state-space realization.

Since the strongly connected networked systems need to have only delay constraints in z-

domain, one can have a network realizable controller in the form of delayed controllers. The
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following theorem sets the necessary and sufficient conditions to have a network realizable

controller for strongly connected systems in the delayed system form.

Lemma 12. Let plant P be defined as in (2.11) be stabilizable and detectable, where the

graph G is strongly connected and let d be the longest path on G. Let Ki = ss(AKi , BKi , CKi , 0)

be a strictly proper stabilizing controller for z−(d−1)P22. Then,

K = z−(d−1)Ki (7.11)

is a network realizable controller for P22 on G.

Proof. Feedback interconnection of P22 and K, i.e. lft(P22,K), is stable if (I − P22K)−1 is

stable. Considering the equality (I − P22(z−(d−1)Ki))
−1 = (I − (z−(d−1)P22)Ki)

−1, P22 is

output feedback controllable if and only if Pd = z−(d−1)P22 is stabilizable and detectable,

since the unstable poles of Pd belongs to the set of unstable poles of P22. It is trivial to show

the rank of observability matrix of Pd is rank(OPd) = (d − 1)n + rank(OP22) and the rank

of controllability matrix of Pd is rank(CPd) ≥ rank(CP22), which completes the proof.

Steps to find a delayed controller can be given as follows:

1. Let (Ad, Bd, Cd, 0) be state-space matrices of Pd = z−(d−1)P22.

2. Find F such that Ad +BdF stable.

3. Find L such that Ad + LCd stable.

4. Construct Ki as

Ki :

 Ad +BdF + LCd −L

F 0

 . (7.12)

5. Add delays to Ki: K = z−(d−1)Ki.

Since, a delayed controller as given in (7.11) inherits the delay constraints in z-domain for

a strongly connected network with longest path d, one can obtain a network implementable
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state-space realization of this delayed controller using the realization method introduced in

section 4.2.

Theorem 8. Let plant P be defined as in (2.11) be stabilizable and detectable, where the

graph G is strongly connected, let d be the longest path on G and, let nx, nu and ny be number

of states, inputs and outputs of the given plant, respectively. Let Ki = ss(AKi , BKi , CKi , 0)

be a strictly proper stabilizing controller for z−(d−1)P22 and define K := z−(d−1)Ki. Let

Ṽd ∈ Ss(G2,PxV , [Px;Pu], [Px;Py]) be a network implementable state-space realization of Vd

which is defined as

Vd =

I +A(zI −A−BuKCy)−1 A(zI −A−BuKCy)−1BuK

KCy(zI −A−BuKCy)−1 K(I − P22K)−1

 ,

and let ˜̄P22 = ss(0,

[
Inx Bu

]
,

A
Cy

 , 0), then K̃ =

[
0 Inu

]
Ṽd(I + ˜̄P22Ṽd)

−1

 0

Iny

 ∈
S(G,PxK ,Pu,Py) is a network implementable controller for the given strongly connected

plant.

Proof. Theorem 8 is a direct result of lemma 8 and lemma 12.

Theorem 8 allows one to obtain network implementable controller for the given strongly

connected networked plant.

7.6 Optimal Network Realizable Controller Problem as a Function of

Network Realizable Controllers

In this section, we define a model matching problem and define an optimal network

realizable control problem for network distributed systems as a function of an initial network

realizable controller.
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The H2 optimal controller problem to obtain a centralized controller can be described

as follows

min ||lft(P,K)||

s.t. K stabilizing.

(7.13)

Furthermore, we are interested in optimal network realizable controller. A network

realizable controller should be an element in T(G,Pu,Py). Therefore, we can define a

optimal network realizable controller problem as

min ||lft(P,K)||

s.t. K ∈ T(G,Pu,Py), K stabilizing.

(7.14)

In lemma 11, we parametrized the internally stabilizing network realizable controllers

as a function of a network realizable Youla parameter. We are interested in solving optimal

network realizable controller problem in a convex way. Next, we formulate a model matching

problem to have the input to output map affine in Youla parameter.

7.6.1 Model Matching Problem

Herein, we provide a model matching problem to obtain input to output map affine in

Q where Q parametrizes all stabilizing controllers as given in (7.8).

One can define a model matching problem with the Bezout identity elements. Let N ,

D, Ñ and D̃ be set of maps satisfy (2.15) such that G22 = ND−1 = D̃−1Ñ . Moreover,

closed loop map from w to z can be given as

Tzw = G11 +G12K(I −G22K)−1G21 (7.15)

using K(I −G22K)−1 = (Y −DQ)D̃, closed loop map from w to z given in (7.15) can be

written as follows [5]
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Tzw = H + UQV

H = G11 +G12Y D̃G21,

U = −G12D,

V = D̃G21.

(7.16)

We benefit the doubly-coprime factorization of P1 = blkdiag(K0,−P22) where doubly

coprime factors, N1, D1, Ñ1 and D̃1 are defined as in (7.1) to define the model matching

problem by defining generalized plant as

G =


−P11 0 −P12

0 K0 0

−P21 0 −P22

 (7.17)

Now, we can define a model matching problem as follows using (7.16) and (7.17)

Tzw = H̄ + ŪQV̄

H̄ = −P11 +

[
0 −P12

]
Y1D̃1

 0

−P21

 ,
Ū =

[
0 P12

]
D1,

V̄ = D̃1

 0

−P21

 .

(7.18)

For a given stabilizing controller K0 of plant P , using definitions of D1 and D̄1 exist in

(7.1), model matching problem can be defined as in the following with a stable Q.

Tzw = T11 + T12QT21

T11 = −P11 − P12K0(I − P22K0)−1P21,

T12 =

[
P12K0(I − P22K0)−1 P12(I −K0P22)−1

]
,

T21 =

K0(I − P22K0)−1P21

−(I − P22K0)−1P21

 .
(7.19)
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Input to output map defined in (7.19) allows us to have Tzw affine in Q which will allow

us to define the optimal controller problem convex in Q.

7.6.2 Optimal Network Realizable Controller Problem

As shown in section 7.5, we can find a network realizable controller for strongly connected

networks as given in (7.11). Moreover, one can obtain a network realizable controller for any

network by solving necessary and sufficient network realizable controller problem given in

(6.16) . Using a network realizable controller, we can define an optimal network realizable

controller problem as in the following theorem benefiting the model matching problem

formulated in (7.19).

Theorem 9. Let the stabilizable and detectable networked plant, P be defined as in (2.11)

and let K0 ∈ T(G,Pu,Py) be a network realizable controller of P . Let T11, T12 and T22

be given as in (7.19) as a function of K0. Then, an optimal network realizable controller

problem can be given as follows

min ||T11 + T12QT21||

s.t. Q ∈ Ts(G2, [Py;Pu], [Pu;Py])
(7.20)

let Q∗ ∈ Ts(G2, [Py;Pu], [Pu;Py]) be a solution of (7.20), then an optimal network realizable

controller can be synthesized as K = lft(−K0, lft(−J̄1,−Q∗)) where and J̄1 is as defined in

(7.5) as a function of K0.

Proof. Proof follows theorem 4 and lemma 11.

Problem defined in (7.20) is non-convex due to structural constraints imposed on Q.

Therefore, we benefit from the vectorization method as shown in [37]. Let vec(Q(z)) be

the vectorized elements of Q(z) ∈ Ts(G2, [Py;Pu], [Pu;Py]). One can write vec(Q(z)) as

vec(Q(z)) = S(z)W (z) for someW (z) ∈ RHa×1
∞ , where S(z) contains the delay and sparsity

constraints imposed by the set Ts(G2, [Py;Pu], [Pu;Py]) (For a demonstration of how to
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obtain systems S(z) and W (z), one can refer to section B.5.). Using the vectorization

method as shown in [37], we obtain

||T11(z) + T12(z)Q(z)T21(z)|| = ||vec(T11(z)) + (T T21(z)⊗ T12(z))S(z)W (z)|| (7.21)

Now, problem in (7.20) can be equivalently written as

min ||vec(T11) + (T T21 ⊗ T12)SW ||

s.t. W ∈ RHa×1
∞

(7.22)

which is a convex problem and can be solved using standard techniques. Problem (7.22)

allows one to obtain H2 optimal network realizable controller benefiting existing solution

methods of H2 problem wherein the solution lies in infinite dimensional space. For existing

solution techniques of H2 problem, one may refer to [4], [5]. Moreover, provided optimal

controller problem can be used to obtain `1 optimal network realizable controller using `1

problem solution technique introduced in [17].

The procedure to obtain an optimal network implementable controller can be listed as

in the following method.

Method 1:

1. Find K0 ∈ T(G,Pu,Py) (If the given network is strongly connected network, one can

find K0 as in theorem 12. Otherwise, one may refer to network realizable controller

problem in (6.16).).

2. Obtain T11, T12 and T21 as given in (7.19).

3. Solve the problem in (7.22) for W ∗ ∈ RH∞ and obtain Q∗ = vec−1(SW ∗) ∈

Ts(G2, [Py;Pu], [Pu;Py]).

4. Obtain a network implementable realization of K0, K̃0, using the block diagram in

figure 4.1 where Ṽ is network implementable state-space realization of V which is

defined in (4.2) (V is function of K0.) and ˜̄P22 is as defined in (4.6).
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5. Obtain the network implementable state-space realizations Q̃∗ and ˜̄J1 of Q∗ and J̄1

where J̄1 is as in (7.5).

6. Obtain the optimal network implementable controller as K̃∗ = lft(−K̃0, lft(− ˜̄J1,−Q̃∗)).

Remark 7. Network implementable state-space realizations of stable network realizable sys-

tems can be obtained by the methods provided in [1] which is reviewed in section C.1.

One can also obtain an optimal network implementable controller K̃∗ as described in

the following method.

Method 2:

1. Apply the steps 1–3 in Method 1.

2. Obtain network realizable controller K∗ = lft(−K0, lft(−J̄1,−Q∗)) ∈ T(G,Pu,Py).

3. Obtain a network implementable state-space realization of network realizable K∗ us-

ing network implementable state-space realization technique shown in section 4.2, i.e.

using block diagram in figure 4.1 where Ṽ is network implementable state-space real-

ization of V which is defined in (4.2) (V is function of K∗.) and ˜̄P22 is as defined in

(4.6).

It should be noted that results obtained in numerical example sections indicates that

one can obtain fewer controller order using Method 2 with respect to using Method 1.

7.7 A Comparison with Existing Optimal Network Realizable

Controller Problems

Optimal network implementable controller obtained using the optimal network realizable

controller problem described in theorem 9 has been compared with the controllers obtained

with existing optimal network realizable controller problems in section 8.2. By regarding

the results of optimal network implementable controller orders obtained in section 8.2, one

can observe the efficiency of the optimal network realizable controller problem obtained in
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chapter 6. Optimal network realizable controller problem defined in theorem 9 is causing an

order inflation due to starting with an initial controller and due to size of the problem. It

should be noted that optimal network realizable controller problem in theorem 9 is actually

designed benefiting coprime factorization of parallel plants: plant and its controller which

is causing order inflation in the input to output map which is further affecting the orders of

the obtained optimal controller. Another reason for order inflation is that optimal network

realizable controller is function of three systems: K0, J̄1 and Q.

7.8 Conclusion

In this chapter, we have shown an alternative way to parametrize all stabilizing network

realizable controllers for networked systems. We have parametrized all stabilizing network

realizable controllers as a function of an initial network realizable controller. Moreover, we

have provided a necessary and sufficient network realizable controller problem for strongly

connected networks. We have formulated a model matching problem and defined a necessary

and sufficient optimal network realizable controller problem.

If the provided network is strongly connected, one can solve the provided optimal net-

work realizable controller problem (7.22) after obtaining an initial network realizable con-

troller benefiting theorem 12. Moreover, for any network, one can find an initial network

realizable controller using theorem 5, then optimal network realizable controller can be

obtained by solving proposed optimal network realizable controller problem in (7.22). Fur-

thermore, one can benefit network distributed controller problems defined in [29], [43] to

obtain an initial network realizable controller to solve the optimal network realizable con-

troller problem defined in (7.22). After, obtaining optimal network realizable controller, we

obtain a network implementable state-space realization using the network implementable

state-space realization methodology formulated in section 4.2. A numerical example for

strongly connected network has been provided in section 8.2 wherein comparisons with

existing methods provided.
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CHAPTER 8. NUMERICAL EXAMPLES

In this chapter we provide numerical examples for the optimal network realizable control

problems defined in chapter 6 and 7. Moreover, network implementable state-space realiza-

tion have been obtained using the network implementable state-space realization method

defined in section 4.2.

8.1 Numerical Example - 1

As an example, 6-node system has been chosen with given A, Bw, Bu, Cz, Cy, Dzw,

Dzu, Dyw as defined in equation (2.11) and this system’s graph is as in figure 2.1. State

space matrices are given as follows

A =



1.2 −0.5 0.4 −0.2 0 0 0.4 −0.3 0 0 0 0

0.3 0.9 −0.1 0.3 0 0 −0.2 0.4 0 0 0 0

0 0 1.1 −0.3 0 0 0.2 −0.2 0 0 0 0

0 0 0.4 1 0 0 −0.2 0.3 0 0 0 0

0.4 −0.2 0 0 0.8 −0.5 0 0 0 0 0 0

−0.1 0.3 0 0 0.3 1.2 0 0 0 0 0 0

0.2 −0.2 0 0 0 0 1.2 −0.5 0.4 −0.3 0 0

−0.2 0.3 0 0 0 0 0.3 0.9 −0.2 0.4 0 0

0 0 0 0 0.4 −0.3 0 0 0.8 −0.5 0 0

0 0 0 0 −0.2 0.4 0 0 0.3 1.2 0 0

0 0 0 0 0 0 0 0 0.4 −0.2 1.1 −0.3

0 0 0 0 0 0 0 0 −0.1 0.3 0.4 1



,
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Bw =



0.3 0 0 0 0 0

0.2 0 0 0 0 0

0 0.4 0 0 0 0

0 0.2 0 0 0 0

0 0 0.4 0 0 0

0 0 0.3 0 0 0

0 0 0 0.3 0 0

0 0 0 0.1 0 0

0 0 0 0 0.3 0

0 0 0 0 0.2 0

0 0 0 0 0 0.4

0 0 0 0 0 0.3



, Bu =



1.2 0 0 0 0 0

−0.8 0 0 0 0 0

0 1 0 0 0 0

0 −0.7 0 0 0 0

0 0 0.8 0 0 0

0 0 −0.5 0 0 0

0 0 0 1.1 0 0

0 0 0 −0.7 0 0

0 0 0 0 1.2 0

0 0 0 0 −0.8 0

0 0 0 0 0 1.1

0 0 0 0 0 −0.7



,

Cz =



0.6 0.5 0.2 0.1 0 0 0.3 0.2 0 0 0 0

0 0 0.5 0.4 0 0 0.2 0.1 0 0 0 0

0.3 0.1 0 0 0.8 0.6 0 0 0 0 0 0

0.2 0.1 0 0 0 0 0.5 0.4 0.3 0.1 0 0

0 0 0 0 0.3 0.2 0 0 0.6 0.5 0 0

0 0 0 0 0 0 0 0 0.3 0.1 0.8 0.6


,

Cy =



0.4 −0.5 0.2 −0.3 0 0 0.3 −0.2 0 0 0 0

0 0 0.5 −0.6 0 0 0.1 −0.1 0 0 0 0

0.2 −0.3 0 0 0.6 −0.4 0 0 0 0 0 0

0.3 −0.2 0 0 0 0 0.5 −0.6 0.2 −0.3 0 0

0 0 0 0 0.1 −0.1 0 0 0.4 −0.5 0 0

0 0 0 0 0 0 0 0 0.3 −0.2 0.5 −0.6


,

Dzw = blkdiag(0.15, 0.25, 0.2, 0.2, 0.15, 0.25),

Dzu = blkdiag(0.1, 0.2, 0.15, 0.1, 0.2, 0.15),

Dyw = blkdiag(0.2, 0.25, 0.2, 0.1, 0.15, 0.2).

Problem (6.16) has been solved and let W̄ ∗1 and W̄ ∗4 be the solution of it. Q∗4 has been

obtained as vec(S4W̄
∗
4 )−1 and optimal controller has been obtained using Q∗4 as K∗ =

−Q∗4(I−P22Q
∗
4)−1. Afterwards, we obtained network implementable state-space realization
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of the optimal controller, K̃∗, using network implementable state-space realizations Ṽ and

˜̄P22 as K̃∗ =

[
0 Inu

]
Ṽ ∗(I + ˜̄P22Ṽ

∗)−1

[
0 Iny

]T
∈ S(G,Pu,Py) which is realized as in

figure 4.1 where V and P̄22 is defined as in (4.2) and (3.3), respectively. ˜̄P22 is obtained

as given in (4.6) and Ṽ has been obtained using network distributed realization method

described in [19]. Order of attained optimal controller is 251 and the H2 cost has been

re-calculated as 1.419. Moreover, sub-controllers order’s are calculated as 59, 29, 49, 51, 56

and 7 for nodes 1− 6, respectively.

Moreover, we obtained an optimal network realizable controller using the method in-

troduced in [43]. Realization of the obtained controller has been attained by both the

realization method shown in [43] and the network state-space realization method shown

in section 4.2 (see figure 4.1), it should be noted that for both of the realization meth-

ods, network implementable state space realization of stable systems have been obtained as

described in section C.1 and illustrated in C.2. Corresponding controller orders has been

calculated as 1021 and 454, respectively. One of the reasons of order difference is that while

the network implementable realization method of [43] is based on network implementable

realization of four stable systems, the network implementable realization method introduced

in section 4.2 is based on network implementable realization of two stable systems.

Table 8.1 H2 bound results of 6-Node System

K∗ Problem

Problem K̃∗ obtained by o(K̃∗) ||Tzw||22
- - 12 1.259

[43] [43] 1021 1.419

[43]
[
0 Inu

]
Ṽ ∗(I + ˜̄P22Ṽ

∗)−1
[
0 Iny

]T
454 1.419

(6.16)
[
0 Inu

]
Ṽ ∗(I + ˜̄P22Ṽ

∗)−1
[
0 Iny

]T
251 1.419
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8.2 Numerical Example - 2

P1

6?

K1

-

6

P2

6?

K2

-�

?

P3

6?

K3

P4

6?

K4

�
P5

6?

K5

�
�
�
�
���

Figure 8.1 A strongly connected distributed system which consists of 5 sub-systems and

their controller units interacting over a causal network.

As an example, 5-node system has been chosen with given A, Bw, Bu, Cz, Cy, Dzw,

Dzu, Dyw as defined in Eq. (2.11) and this system’s graph is as in figure 8.1. State space

matrices are given as follows

A =



1.2 −0.5 0 0 0 0 0.4 −0.2 0 0

0.3 0.9 0 0 0 0 −0.1 0.3 0 0

0.2 −0.2 1.1 −0.3 0.4 −0.3 0 0 0 0

−0.2 0.3 0.4 1 −0.2 0.4 0 0 0 0

0 0 0.4 −0.2 0.8 −0.5 0 0 0.4 −0.3

0 0 −0.1 0.3 0.3 1.2 0 0 −0.2 0.4

0 0 0 0 0 0 1.2 −0.5 0.2 −0.2

0 0 0 0 0 0 0.3 0.9 −0.2 0.3

0 0 0.4 −0.2 0 0 0 0 1.1 −0.3

0 0 −0.1 0.3 0 0 0 0 0.4 1



,
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Bw =



0.3 0 0 0 0

0.2 0 0 0 0

0 0.4 0 0 0

0 0.2 0 0 0

0 0 0.4 0 0

0 0 0.3 0 0

0 0 0 0.3 0

0 0 0 0.1 0

0 0 0 0 0.3

0 0 0 0 0.2



, Bu =



1.2 0 0 0 0

−0.8 0 0 0 0

0 1 0 0 0

0 −0.7 0 0 0

0 0 0.8 0 0

0 0 −0.5 0 0

0 0 0 1.1 0

0 0 0 −0.7 0

0 0 0 0 1.2

0 0 0 0 −0.8



,

Cz =



0.6 0.5 0 0 0 0 0.2 0.1 0 0

0.3 0.1 0.5 0.4 0.3 0.2 0 0 0 0

0 0 0.2 0.1 0.8 0.6 0 0 0.3 0.2

0 0 0 0 0 0 0.6 0.5 0.3 0.1

0 0 0.2 0.1 0 0 0 0 0.5 0.4


,

Cy =



0.4 −0.5 0 0 0 0 0.2 −0.3 0 0

0.1 −0.1 0.5 −0.6 0.3 −0.2 0 0 0 0

0 0 0.2 −0.3 0.6 −0.4 0 0 0.3 −0.2

0 0 0 0 0 0 0.4 −0.5 0.1 −0.1

0 0 0.2 −0.3 0 0 0 0 0.5 −0.6


,

Dzw = blkdiag(0.15, 0.15, 0.2, 0.2, 0.2),

Dzu = blkdiag(0.1, 0.2, 0.15, 0.1, 0.2),

Dyw = blkdiag(0.2, 0.25, 0.2, 0.1, 0.15).

We found a network realizable controller, K0 ∈ T(G,Py,Pu) with the method introduced

in theorem 12. Using this K0, we solved the optimal network realizable controller problem

given in (7.22) for W ∗. After that, using optimal W ∗, we obtained Q∗ = vec−1(SW ∗). We

obtained the optimal network realizable controller by K∗ = lft(−K0, lft(−J̄1,−Q∗)) and

network implementable state-space realization, K̃∗ is obtained as described in Method 2 in

section 7.6.2. Obtained optimal controller order is 364. H2 cost has been recalculated with
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K̃∗ and found as 1.316 and, each sub-controllers order’s are calculated as 53, 100, 77, 64

and 70 for nodes 1, 2, 3, 4 and 5, respectively. In addition, we also obtained the network im-

plementable optimal controller, K̃∗ ∈ S(G,PxK ,Pu,Py), by K̃∗ = lft(−K̃0, lft(− ˜̄J1,−Q̃∗))

using network implementable state-space realizations K̃0, ˜̄J1 and Q̃∗. For this case, we

obtained the order of K̃∗ as 691 and increase in optimal controller order, o(K̃∗), is due

to separate realization of K0, J̄1 and Q∗. These two different optimal control realization

indicates that obtaining realization of K∗ as defined in Method 2 in section 7.6.2 yields a

reduced controller order.

Moreover, we solved the sufficiency problem introduced in [43] to obtain optimal network

distributed controller problem, and the network implementable state-space realization has

been derived with both the method given in [43] and the block diagram in figure 4.1, and

controller orders found as 1176 and 398, respectively. These results show that network

implementable state-space realization method shown by figure 4.1 yields a smaller order.

One of the main reason of this is that while the network realization method of [43] requires

network realization of four stable systems, the network realization method as shown in

figure 4.1 requires network realization of two stable systems.

Furthermore, in order to obtain an H2 optimal controller in infinite dimensional space,

one can also solve the problem defined in (7.20) as a function of other initial network realiz-

able controllers. A convex solution to H2 problem in (7.20) can be provided either with the

vectorization method described in (7.22) or with the method described in [21]. For compar-

ison, we also obtained initial network realizable controllers by solving problems described

in [43] and [29], and network implementable state-space realizations, K̃0, obtained by the

network implementable state-space realization techniques described in the corresponding

works. After solving optimal network realizable controller problem exists in (7.20), optimal

controller realizations have been obtained with both using lft(−K̃0, lft(− ˜̄J1,−Q̃∗)) and the

method described in Method 2 in section 7.6.2. Results can be observed on table 8.2.

We also obtained optimal network realizable controller using the optimal network re-
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alizable controller problem formulated in (6.16). After obtaining the network realizable

optimal controller, we obtained the network implementable state-space realization using

the network implementable state-space realization technique shown in section 4.2 and the

order of network implementable controller has been found as 178. Results in table 8.2 shows

the efficiency of our formulated method in terms of optimal controller order.

Table 8.2 H2 bound results of 5-Node System.

K0 Problem K∗ Problem

Pr. Distr. S.S. real. o(K̃0) Pr. Distr. S.S. real. o(K̃∗) ||Tzw||22
- - - - - 10 1.134
- - - [43] [43] 1176 1.316
- - - [43] (4.7) 398 1.316

[29] [29] 325 (7.20) −lft(K̃0, lft(
˜̄J1, Q̃

∗)) 1027 1.316

[43] [43] 285 (7.20) −lft(K̃0, lft(
˜̄J1, Q̃

∗)) 625 1.316

(7.11) (4.7) 202 (7.20) −lft(K̃0, lft(
˜̄J1, Q̃

∗)) 691 1.316
[29] - - (7.20) (4.7) 536 1.316
[43] - - (7.20) (4.7) 361 1.316

(7.11) - - (7.20) (4.7) 364 1.316
- - - (6.16) (4.7) 178 1.316
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CHAPTER 9. MAIN RESULTS AND CONTRIBUTIONS

We formulated an all stabilizing controller parametrization benefiting a stably defined

congruent plant and its all stabilizing controller parametrization which does not require to

have doubly-coprime factorization of plants. Benefiting this parametrization, we defined a

necessary and sufficient problem to obtain an output feedback controller and provided a

two-step solution procedure for the formulated problem wherein a solution can be obtained

in infinite dimensional space. Moreover, we obtained necessary and sufficient problems to

attain a dynamic state-feedback controller and a dynamic state observer.

We provided a doubly coprime factorization of blkdiag(I,K) where K is a controller

of the given plant. We showed that if the given controller inherits the network’s sparsity

and delay constraints of the given plant, then using the formulated coprime factorization

of blkdiag(I,K), we showed that one can obtain network implementable state-realization

of the given controller benefiting existing network implementable state-space realization

method described for stable network realizable systems.

We formulated a necessary and sufficient network realizable controller problem for any

network distributed system such that solution lies in infinite dimensional space which is one

of the main contribution of this work. Furthermore, optimal network realizable controller

problem has been formulated as a convex unconstrained problem which can be solved using

existing solution techniques. Provided optimal network realizable controller problem does

not require to have a doubly coprime factorization of plant or an initial controller. Obtained

results with the provided numerical examples indicates that provided optimal network re-

alizable controller problem and the presented network implementable realization method
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allow one to obtain optimal network implementable controller in fewer orders with respect

to other existing problems and realization methods.

Furthermore, we provided an alternative way to parametrize all stabilizing network real-

izable controllers as a function of an initial network realizable controller benefiting existing

Youla parametrization. We showed that for strongly connected networks if the plant is

stabilizable and realizable, then there exists a network realizable controller in the form of

delayed controllers. Moreover, we defined a necessary and sufficient optimal network realiz-

able controller problem for network distributed systems as a function of an initial network

realizable controller. Using network realizable controller in the form of delayed controller

one can solve the provided optimal network realizable controller problem for strongly con-

nected networks. Moreover, in the case of network is not strongly connected, one can benefit

the network realizable controller problem provided in chapter 5 to have an initial network

realizable controller to solve the optimal network realizable controller problem.

9.1 Directions for Future Work

As future research work, we would be interested in studying network implementable

state-space realization of any given system which inherits the given graph’s delay and spar-

sity constraints of the given network. Moreover, one can investigate the ways to obtain

network implementable state-space realization of network realizable controllers in reduced

order. We are also interested in solving network realizable control problems more efficiently

without depending on the vectorization method. Moreover, for the larger sized networked

systems, distributed solution methods can be investigated to obtain the network realizable

controllers in a distributed fashion.
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APPENDIX A. ADDITIONAL PROOFS

In this section we will give proofs of some lemmas, theorems and corollaries which are

not given in the previous chapters.

A.1 Proof of lemma 1

Proof. ⇒ We will first show that for a stable Q, K = −Q(I − P22Q)−1 is an internally

stabilizing controller of stable plant P22.

e(k)
- f - K

u(k)
- f - Bu

- f - z−1
x(k)

- Cy

y(k)

6

?

A

6

x0(k)

?

d(k)

r

Figure A.1 Block diagram of P22 in feedback with controller K.

Let x0(k) be the noise of plant’s states, e(k) be the noise of output u(k), and d(k) be the

noise of input u(k) as in figure A.1. For an internally stabilizing controller, K, the input[
x′0 e′ d′

]′
to output

[
x′ y′ u′

]′
map needs to be stable. Let Z = (zI −A−BuKCy).

In a closed loop system, when all nine maps from

[
x′0 e′ d′

]′
to
[
x′ y′ u′

]′
:
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
Z−1 Z−1BuK Z−1Bu

CyZ
−1 P22K(I − P22K)−1 P22(I −KP22)−1

KCyZ
−1 K(I − P22K)−1 KP22(I −KP22)−1

 (A.1)

are stable, then closed loop can be called as internally stable. Let ZQ := (zI−A−BuQCy).

For K = −Q(I − P22Q)−1, maps in (A.1) can be equivalently given as
(zI −A)−1ZQ(zI −A)−1 −(zI −A)−1BuQ (zI −A)−1ZQ(zI −A)−1Bu

Cy(zI −A)−1ZQ(zI −A)−1 −P22Q P22(I −QP22)

−QCy(zI −A)−1 −Q −QP22

 (A.2)

Since, the given plant P22 is stable, for a stable Q, nine maps given in (A.2) are stable.

Therefore, for any stable Q, K = −Q(I − P22Q)−1 is an internally stabilizing controller of

stable plant P22.

⇐ Now, we will show that if the given K is a controller of P22, then K can be

parametrized as K = −Q(I − P22Q)−1 with a stable Q.

Let us define Q := −K(I − P22K)−1, then Q is stable since K is stabilizing P22. Sub-

stituting Q = −K(I − P22K)−1 into −Q(I − P22Q)−1

−Q(I − P22Q)−1 = K(I − P22K)−1(I + P22K(I − P22)−1)−1

= K

(A.3)

which shows that with a stable Q, controller can be parametrized as K = −Q(I−P22Q)−1.
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A.2 Proof of corollary 1

Proof. We will show that using (3.12c), (3.7b) and (3.7a), we can have the linear relationship

between Q1 and Q2 as in (3.12a), then equation set in (3.4) will be equivalent to equation

set in (3.13) and result will follow lemma 2.

Using (3.7b), we have

z−1ABuQ4 = −(z−1A− I)Q2. (A.4)

Moreover, multiplying (3.12c) from left with z−1ABu brings in

z−1ABuQ3(z−1A− I) + z−1ABuQ4(z−1Cy) = 0. (A.5)

Using (A.4), we can re-write (A.5) as follows

z−1ABuQ3(z−1A− I)− (z−1A− I)Q2(z−1Cy) = 0. (A.6)

So, using (A.6) one can obtain z−1ABuQ3 as follows

z−1ABuQ3 = (z−1A− I)Q2(z−1Cy)(z
−1A− I)−1. (A.7)

Plugging in definition of z−1ABuQ3 as in (A.7) into (3.7a) brings in

(z−1A− I)Q1 + (z−1A− I)Q2(z−1Cy)(z
−1A− I)−1 = I. (A.8)

Finally, we obtain the (3.12a) by multiplying (A.8) from right with (z−1A − I) and from

left with (z−1A− I)−1.

A.3 Proof of lemma 3

Proof. Existence of Q̄1 ∈ RH∞ and Q̄3 ∈ RH∞ which make the objective of (3.30) zero,

equivalently means that there exists a stable right inverse of X :=

[
z−1A− I z−1Bu

]
which can be true if and only if rank(X) = nx, for all z ∈ C with |z| ≥ 1. For all z ∈ C

with |z| ≥ 1, rank of X can be equivalently find by rank of X̄ :=

[
A− zI Bu

]
. Moreover,

PBH test for stabilizability states that pair (A,Bu) is stabilizable if and only if X̄ has rank

nx for all z ∈ C with |z| ≥ 1. Therefore, we can conclude that pair (A,Bu) is stabilizable if

and only if there exists a solution of (3.30) such that its objective is zero.
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A.4 Proof of lemma 4

Proof. Existence of Q̄1 ∈ RH∞ and Q̄2 ∈ RH∞, which makes the objective of the (3.31)

zero, equivalently means that there exists a stable left inverse of X =

z−1A− I

z−1Cy

 which

can be true if and only if rank(X) = nx, for all z ∈ C with |z| ≥ 1. Moreover, rank of X

can be equivalently found by rank of Y =

A− zI
Cy

 for all z ∈ C with |z| ≥ 1. PBH test

for detectability states that pair (A,Cy) is detectable if and only if Y has rank nx for all

z ∈ C with |z| ≥ 1 and result follows.

A.5 Proof of corollary 4

Proof. Corollary 6 proves that there exists a zero norm solution to (3.38) if and only if there

exists a zero norm solution to (3.35). Since (3.35) and (3.30), and (3.38) and (3.32) are

same problems, by regarding corollary 6, it follows that there exists a zero norm solution

to (3.30) if and only if there exists a zero norm solution to (3.32). Corollary 3 claims that

given plant or the pair (A,Bu) is stabilizable if and only if there exists a zero norm solution

to (3.30). Therefore, given plant or the pair (A,Bu) is stabilizable if and only if there exists

a zero norm solution to (3.32).

A.6 Proof of corollary 5

Proof. Corollary 7 proves that there exists a zero norm solution to (3.39) if and only if there

exists a zero norm solution to (3.37). Since (3.37) and (3.31), and (3.39) and (3.33) are

same problems, by regarding corollary 7, it follows that there exists a zero norm solution

to (3.31) if and only if there exists a zero norm solution to (3.33). Corollary 4 claims that

given plant or the pair (A,Cy) is detectable if and only if there exists a zero norm solution

to (3.31). Therefore, given plant or the pair (A,Cy) is detectable if and only if there exists

a zero norm solution to (3.33).
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A.7 Proof of lemma 5

Proof. Since P̄f given in (3.34) is stable, dynamic state-feedback controllers of P̄f can be

parametrized as F̄ = −Q̄(I − P̄f Q̄)−1 with Q̄ ∈ RH∞ according to lemma 1. In order to

have a stabilizing F also for plant P22 with Cy = I, we need to find a Q̄ which induces a

structured F̄ =

Inx
F

 such that lft(P̄f , F̄ ) is stable.

Using parametrization F̄ = −Q̄(I − P̄f Q̄)−1 :Inx
F

 = −

Q̄1

Q̄3

 (I −
[
z−1A z−1Bu

]Q̄1

Q̄3

)−1 (A.9)

Multiplying (A.9) from right with (I −
[
z−1A z−1Bu

]Q̄1

Q̄3

) allows us to write the fol-

lowing equations

I − z−1AQ̄1 − z−1BuQ̄3 = −Q̄1 (A.10a)

F (I − z−1AQ̄1 − z−1BuQ̄3) = −Q̄3 (A.10b)

Using equation (A.10a) we obtain the equation

(z−1A− I)Q̄1 + z−1BuQ̄3 = I (A.11)

Moreover, using (A.10a), equation (A.10b) simplifies to

− FQ̄1 = −Q̄3 (A.12)

Therefore, if there exist feasible Q̄1 ∈ RH∞ and Q̄3 ∈ RH∞ which satisfy (A.11), then we

can obtain F as F = Q̄3Q̄
−1
1 .
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A.8 Proof of lemma 6

Proof. Since P̄o given in (3.36) is stable, dynamic state observer of P̄o can be parametrized as

L̄ = −(I− Q̄P̄o)−1Q̄ with Q̄ ∈ RH∞ according to lemma 1. In order to have a stabilizing L

also for plant P22 with Bu = I, we need to find a Q̄ which induces a structured L̄ =

[
Inx L

]
such that lft(P̄o, L̄) is stable.

Using parametrization L̄ = −Q̄(I − P̄oQ̄)−1 :

[
Inx L

]
= −(I −

[
Q̄1 Q̄2

] z−1A

z−1Cy

)−1

[
Q̄1 Q̄2

]
(A.13)

Multiplying (A.13) from left with (I−
[
Q̄1 Q̄2

] z−1A

z−1Cy

) allows us to write the following

equations

I − z−1Q̄1A− z−1Q̄2Cy = −Q̄1 (A.14a)

(I − z−1Q̄1A− z−1Q̄2)L = −Q̄3 (A.14b)

Using equation (A.14a) we obtain the equation

Q̄1(z−1A− I) + z−1Q̄2Bu = I (A.15)

Moreover, using (A.14a), equation (A.14b) simplifies to

− Q̄1L = −Q̄2. (A.16)

Therefore, if there exist feasible Q̄1 ∈ RH∞ and Q̄2 ∈ RH∞ which satisfy (A.15), then we

can obtain L as L = Q̄−1
1 Q̄2.

A.9 Proof of corollary 6

Proof. For a given F , using parametrization Q̄ = −F̄ (I−P̄f F̄ )−1, we have that Q̄1 = −zZ−1

and Q̄3 = −zKZ−1 where Z = zI − A − BuF . Therefore, Q1 ∈ RH∞ satisfying (A.11)



www.manaraa.com

91

admits a form Q̄1 := −I+z−1Q̂1 wherein Q̂1 is stable and casual, so we can re-write (A.11)

as follows

(z−1A− I)(−I + z−1Q̂1) + z−1BuQ̄3 = I. (A.17)

which simplifies to

−A+ (z−1A− I)Q̂1 +BuQ̄3 = 0. (A.18)

A feasible solution to (A.18) must satisfy the following

− LA+ L(z−1A− I)Q̂1 = 0. (A.19)

Therefore, there exists a state-feedback controller if and only if there exists a feasible solution

to (A.19) such that Q̂1 ∈ RH∞, which equivalently makes the objective of (3.38) zero. Let

Q̂∗1 be a feasible solution to (A.19), then using (A.18), Q̄∗3 can be recovered as B†u(A−(z−1A−

I)Q̂∗1). Then, a dynamic state controller can be synthesized as F = Q̄3(z−1Q̂1 − I)−1 by

regarding lemma 5.

A.10 Proof of corollary 7

Proof. For a given L, using parametrization Q̄ = −(I−L̄P̄o)−1L̄, we have that Q1 = −zZ−1

and Q2 = −zZ−1L where Z = zI−A−LCy. Therefore, Q1 ∈ RH∞ satisfying (A.15) admits

a form Q̄1 = −I + z−1Q̂1, so we can re-write (A.15) as follows

(z−1A− I)(−I + z−1Q̂1) + z−1Q̄2Cy = I. (A.20)

which simplifies to

−A+ (z−1A− I)Q̂1 + Q̄2Cy = 0. (A.21)

A feasible solution to (A.21) must satisfy the following

−AR+ Q̂1(z−1A− I)R = 0. (A.22)

Therefore, there exists a state observer if and only if there exists a feasible solution to (A.22)

such that Q̂1 ∈ RH∞, which equivalently makes the objective of (3.39) zero. Let Q̂∗1 be a
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feasible solution to (A.22), then using (A.21), Q̄2 can be recovered as (A−Q̂1(z−1A−I))C†y.

Then, a dynamic state observer can be synthesized as L = (z−1Q̂∗1 − I)−1Q̄∗2 by regarding

lemma 6.

A.11 Proof of lemma 7

Proof. As shown in proof of 2, one can parametrize blkdiag(Inx ,K) as −Q̄(I − P̄22Q̄)−1

where Q̄ ∈ RH∞ satisfies the equalities in (3.4). By defining V := −Q̄ and W := (I−P̄22Q̄),

we can express K̄ = −Q̄(I−P22Q̄) as VW−1. To be able to define V , we will find definition

of Q̄ in terms of K which satisfies equations (3.4).

As it is given in (3.10), we can express Q4 as Q4 = −K(I − P22K)−1. Moreover, using

(3.12c) and Q4 = −K(I − P22K)−1 , we can express Q3 in terms of K using as in the

followings

Q3 = Q4Cy(zI −A)−1

= −K(I − Cy(zI −A)−1BuK)−1Cy(zI −A)−1

= −KCy(I − (zI −A)−1BuKCy)
−1(zI −A)−1

= −KCy(zI −A−BuKCy)−1

(A.23)

Moreover, by plugging the definition of Q3 obtained in (A.23) into (3.7a), we can express

Q1 as follows

Q1 = (z−1A− I)−1 − z−1(z−1A− I)−1ABuQ3

= (z−1A− I)−1 + z−1(z−1A− I)−1ABuKCy(zI −A−BuKCy)−1

= −I −A(zI −A−BuKCy)−1

(A.24)

Furthermore, using (3.7b) and Q4 = −K(I −P22K)−1, we can express Q2 in terms of K as

in the following



www.manaraa.com

93

Q2 = (zI −A)−1ABuQ4

= −(zI −A)−1ABuK(I − Cy(zI −A)−1BuK)−1

= −A(zI −A)−1(I −BuKCy(zI −A)−1)−1BuK

= −A(zI −A−BuKCy)−1BuK

(A.25)

Using (3.10), (A.23), (A.24) and (A.25), we can express Q as follows

Q̄ =

−I −AZ−1 −AZ−1BuK

−KCyZ−1 −K(I − PK)−1

 . (A.26)

Therefore, using definition of V = −Q̄, we obtain V as given in (4.2). Also, using definition

of W = (I − P̄22Q̄), we obtain W as given in (4.2). Instead of showing W = (I − P̄22Q̄)

is equivalent to definition of W given in (4.2), we shortly show that W defined as in (4.2)

satisfies the equality V = K̄W :

V = K̄W

=

I 0

0 K


I +AZ−1 AZ−1BuK

CyZ
−1 (I − P22K)−1


=

I +AZ−1 AZ−1BuK

KCyZ
−1 K(I − P22K)−1


(A.27)

Moreover, we can equivalently parametrize K̄ as

K̄ = −(I − Q̄P̄22)−1Q̄ (A.28)

Let us define V̄ := −Q̄, so we obtain the V̄ defined in (4.2). Also, define W̄ := (I − Q̄P̄22)

which is equivalent to W̄ given in (4.2). Instead of showing W̄ = (I − Q̄P̄22) is equivalent

to W̄ in (4.2), we shortly show that W̄ defined as in (4.2) satisfies the equality V̄ = W̄ K̄:
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V̄ = W̄ K̄

=

I +AZ−1 AZ−1Bu

KCyZ
−1 (I −KP22)−1


I 0

0 K


=

I +AZ−1 AZ−1BuK

KCyZ
−1 (I −KP22)−1K


(A.29)

Next, we will show that equality (4.3) holds. Let Φ be defined as Φ :=

Φ1 Φ2

Φ3 Φ4

.

Then, we have Φ1 Φ2

Φ3 Φ4

 =

I 0

0 I

 (A.30)

1. First, we will show that Φ1 = X̄W − Ȳ V = I holds.

Φ1 :=

Φ1
1 Φ2

1

Φ3
1 Φ4

1

 =

I 0

0 I

 (A.31)

Φ1
1 = I +AZ−1 − z−1A− z−1A2Z−1 − z−1ABuKCyZ

−1

= (Z +A− z−1AZ − z−1A2)Z−1

= ZZ−1

= I.

Using equality K(I − PK)−1 = K +KCyZ
−1BuK, one can obtain the followings

Φ2
1 = AZ−1BuK − z−1A2Z−1BuK − z−1ABuK(I − P22K)−1

= (A− z−1A2 − z−1AZ − z−1ABuKCy)Z
−1BuK

= 0.

Φ3
1 = CyZ

−1 − z−1Cy − z−1CyAZ
−1 − z−1CyBuKCyZ

−1

= (Cy − z−1CyZ − z−1CyA− z−1CyBuKCy)Z
−1

= 0.
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Using equality AZ−1BuK = A(zI − A)−1BuK(I − P22K)−1, one can obtain the following

equalities

Φ4
1 = (I − PK)−1 − z−1Cy(AZ−1BuK +BuK(I − P22K)−1)

=
[
I − z−1CyA(zI −A)−1BuK − z−1CyBuK

]
(I − P22K)−1

=
[
I − z−1Cy(zI −A)−1(ABuK + (zI −A)BuK)

]
(I − P22K)−1

=
[
I − Cy(zI −A)−1BuK

]
(I − P22K)−1

= I.

2. Φ2 = X̄Y − Ȳ X = 0 is an immediate result of X = X̄ and Y = Ȳ .

3.Equalities K̄W = V and W̄ K̄ = V̄ can be observed trivially, which yield VW−1 =

W̄−1V̄ and therefore, we have Φ3 = V̄ W − W̄V = 0.

4. Now, we will prove the equality Φ4 = −V̄ Y + W̄X = I.

Φ4 :=

Φ1
4 Φ2

4

Φ3
4 Φ4

4

 =

I 0

0 I

 (A.32)

Φ1
4 = −z−1A− z−1AZ−1A− z−1AZ−1BuKCy + I +AZ−1

= −z−1AZ−1(z−1I −A−BuKCy)− z−1A+ I

= I.

Using equality K(I − P22K)−1 = K +KCyZ
−1BuK, one can obtain the followings

Φ2
4 = −z−1(I +AZ−1)ABu − z−1AZ−1BuKCyBu +AZ−1Bu

= −z−1ABu + z−1AZ−1(zI −A−BuKCy)Bu

= 0.

Φ3
4 =− z−1KCyZ

−1A− z−1K(I − P22K)−1Cy +KCyZ
−1

=− z−1KCyZ
−1A− z−1(K +KCyZ

−1BuK)Cy +KCyZ
−1

=z−1KCyZ
−1(zI −A−BuKCy)− z−1KCy

=0.
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Using equality K(I−P22K)−1 = K+KCyZ
−1BuK and (I−KP22)−1 = I+KCy(zI−

A−BuKCy)−1Bu, one can obtain the followings

Φ4
4 =− z−1KCyZ

−1ABu − z−1K(I − P22K)−1CyBu + (I −KP22)−1

=− z−1KCyZ
−1ABu − z−1(K +KCyZ

−1BuK)CyBu + I

+KCy(zI −A−BuKCy)−1Bu

=z−1KZ−1(zI −A−BuKCy)Bu − z−1KCyBu + I

=I.

These derivations proves that Φ = I is satisfied.

Moreover, since Q̄ is stable, V and V̄ are stable by their definition. Moreover, since P̄22

is stable, then W = I − P̄22Q̄ and W̄ = I − Q̄P̄22 are also stable. Furthermore, we have

shown that (4.3) holds. Therefore, if K stabilizes P22, then a doubly coprime factorization

of K̄ = blkdiag(Inx ,K) can be given as K̄ = VW−1 = W̄−1V̄ .
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APPENDIX B. EXTENSIONS

B.1 Controllers of Continuous Time Systems

For a given continuous time system ẋ(t) = Ax(t) +Buu(t), for a sampling period of T ,

its discrete time system can be given as x(k + 1) = Adx(k) +Bdu(k) where

Ad = eAT = I +AT +
1

2!
A2T 2 +

1

3!
A3T 3 + ...

Bd =

∫ T

0
eAτBudτ = BuT +

1

2!
ABuT

2 +
1

3!
A2BuT

3 + ...

For a given structured A ∈ S(A(G),Px,Py) its structure does not preserve for the terms

Am for m > 1, therefore discretization does not preserve the network structure which should

be avoided for the networked structured systems.

To obtain all stabilizing controllers of continuous time systems, P̄22 and K̄ needs to be

chosen different than P̄22 defined in (3.3). One may choose

P̄22 =

 (s+ a)−1A (s+ a)−1ABu

(s+ a)−1Cy (s+ a)−1CyBu


with K̄ = blkdiag(s−1(s+ a)I, s−1(s+ a)K) wherein a is any a ∈ R+ and then follow the

proof of lemma 2 to obtain all stabilizing controllers for continuous time systems.

Moreover, on H2 optimal control problem of continuous time systems, closed loop map

needs to be strictly proper, i.e. Dzw +DzuDKDyw = 0.
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B.2 Output Feedback Controller Problems for Special Cases

In this section we will provide controller problems for the cases of ”null space of (ABu)T

is empty”, ”null space of Cy is empty” and ”null spaces of both (ABu)T and Cy are empty”.

Corollary 10. Let the plant be as given in (2.11). Let ABu be such that null space of

(ABu)T is empty and let Cy be such that null space of Cy is not empty. Let R be a concate-

nation of null space vectors of Cy. There exists an internally stabilizing controller, if and

only if there exists a Q̃1 which makes the objective of the following problem zero.

min
Q̃1

∥∥∥−A2R+ Q̃1(z−1A− I)R
∥∥∥2

2

s.t. Q̃1 ∈ RH∞

(B.1)

Moreover, let Q̃∗1 be a solution to (B.1) such that objective of (B.1) is zero, and let Q∗4 =

(ABu)−1(−A2(z−1A− I) + (z−1A− I)Q̃∗1(z−1A− I))C†y, then an internally stabilizing can

be given as K = −Q∗4(I − P22Q
∗
4)−1.

Proof. Proof follows corollary 3.

Problem (B.1) is in the form ofH2 problem and existing solution methods ofH2 problem

can be used to have a solution in infinite dimensional space.

Corollary 11. Let the plant be as given in (2.11). Let ABu be such that null space of

(ABu)T is not empty and let Cy be such that null space of Cy is empty. Let LT be a

concatenation of null space vectors of (ABu)T and define L := LTT . There exists an inter-

nally stabilizing controller, if and only if there exists a Q̃1 which makes the objective of the

following problem zero.

min
Q̃1

∥∥∥−LA2 + L(z−1A− I)Q̃1

∥∥∥2

2

s.t. Q̃1 ∈ RH∞

(B.2)

Moreover, let Q̃∗1 be a solution to (B.2) such that objective of (B.2) is zero, and let Q∗4 =

(ABu)†(−A2(z−1A− I) + (z−1A− I)Q̃∗1(z−1A− I))C−1
y , then an internally stabilizing can

be given as K = −Q∗4(I − P22Q
∗
4)−1.
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Proof. Proof follows corollary 3.

Problem (B.2) can be solved as a classical H2 problem to have a solution in infinite

dimensional space.

Corollary 12. Let the plant be as given in (2.11). Let A, Bu and Cy be such that null

spaces of both (ABu)T and Cy are empty. Let Q̃1 be any system in space RHnx×nx∞ . Let

Q4 = (ABu)−1(−A2(z−1A−I)+(z−1A−I)Q̃1(z−1A−I))C−1
y , then an internally stabilizing

controller can be given as K = −Q4(I − P22Q4)−1.

Proof. Proof follows corollary 3

By regarding corollary 12, one can trivially give a stabilizing controller for plant P as

K = −Q4(I−P22Q4)−1 wherein Q4 = −(ABu)−1A2(z−1A− I)C−1
y when A, Bu and Cy are

such that null spaces of both (ABu)T and Cy are empty.

B.3 Alternative Controller Problems

Controller problems given in chapter 3 whether requires to use vectorization technique

or two-step solution procedure as in given in theorem 3 to attain a solution in infinite

dimensional space. In this section, we propose alternative methods to obtain a controller

in one step. While the problems given in chapter 3 are necessary and sufficient problems to

obtain a controller, problems given in this chapters are sufficient problems. If there exists

a solutions to the problems given in this chapter then one can obtain a controller for the

given plant.

B.3.1 Alternative Controller Problem - 1

In this section we propose an alternative problem to solve the controller synthesis prob-

lem in one step.
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Corollary 13. Let the plant be as given in (2.11). Let ABu = UBSBV
T
B and Cy = UCSCV

T
C

be singular value decompositions of ABu and Cy, such that SB =

 S̄B

0nx−nu,nu

 and SC =

[
S̄C 0ny ,nx−ny

]
. Let Θ(Q̃1) be defined as

Θ(Q̃1) = −A2(z−1A− I) + (z−1A− I)Q̃1(z−1A− I). (B.3)

Let Ω(Q̃1) be defined as follows

Ω(Q̃1) :=

Ω1(Q̃1) Ω2(Q̃1)

Ω3(Q̃1) Ω4(Q̃1)

 := U−1
B Θ(Q̃1)(V T

C )−1 (B.4)

where Ω1(Q̃1) ∈ RHnu×ny∞ for a Q̃1 ∈ RH∞. There exists an internally stabilizing con-

troller, if and only if there exists a Q̃1 which makes the objective of following problem zero.

min
Q̃1

4∑
i=2

∥∥∥Ωi(Q̃1)
∥∥∥2

2

s.t. Q̃1 ∈ RH∞

(B.5)

Moreover, let Q̃∗1 be a solution to (B.5), and Q∗4 = (ABu)†Θ(Q̃∗1)C†y, then, an internally

stabilizing can be given as K = −Q∗4(I − P22Q
∗
4)−1.

Proof. If we multiply (3.17) from left with U−1
A and from right with V −1

C , we obtain the

following

U−1
B

[
−A2(z−1A− I) + (z−1A− I)Q̃1(z−1A− I)

]
V −1
C

= U−1
B ABuQ4CyV

−1
C =

Ω1 0

0 0

 . (B.6)

Since for a Q̃1 ∈ RH∞, Ω1 is in space RH∞, we need to only solve for zero equalities in

(B.6). Therefore, constraint given in (3.17) can be equivalently written with the constraints

set: Ω2(Q̃1) = 0, Ω3(Q̃1) = 0 and Ω4(Q̃1) = 0, and results follow corollary 2.
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In order to be able use the existing H2 solution methods, minimized function need

to be affine in variable, i.e. in the form of H + UQV for some H, U , V wherein Q is

variable. As it can be noticed, problem given in corollary 13 is not in this form, hence,

classical solution methods can not be applied. Therefore, one may take advantage of the

vectorization method as shown in [37] to attain an equivalent of minimized function where

existing solution methods of H2 problem can be applied.

Next, we propose an alternative problem to solve an internally stabilizing controller

problem by taking equation (B.6) into consideration to find an internally stabilizing con-

troller by avoiding vectorization method.

Multiplying left hand side of (B.6) from left with Iu and from right with Iy brings in

IuU
−1
A

[
(z−1A− I)Q̃1(z−1A− I)−A2(z−1A− I)

]
V −1
C Iy

=

ε21Ω1(Q̃1) ε1Ω2(Q̃1)

ε1Ω3(Q̃1) Ω4(Q̃1)

 . (B.7)

If we put equation (B.7) through minimization, ε21

∥∥∥Ω1(Q̃1)
∥∥∥2

2
possesses a negligible magni-

tude for a small enough ε1 ∈ R+. Therefore, one can subject (B.7) to norm minimization

in search of a controller.

Proposition 1. Let the plant be as given in (2.11). Let ε1 ∈ R+ be small enough. Let

ABu = UBSBV
T
B and Cy = UCSCV

T
C be singular value decompositions of ABu and Cy, such

that SB =

 S̄B

0nx−nu,nu

 and SC =

[
S̄C 0ny ,nx−ny

]
. Let Iu = blkdiag(ε1Inu , Inx−nu) and

Iy = blkdiag(ε1Iny , Inx−ny). Let HΩ = IuU
−1
B (−A2(z−1A−I))V −1

C Iy, UΩ = IuU
−1
B (z−1A−

I) and VΩ = (z−1A− I)V −1
C Iy. Let Q̃∗1 be a solution of the following problem

min
Q̃1

∥∥∥HΩ + UΩQ̃1VΩ

∥∥∥2

2

s.t. Q̃1 ∈ RH∞.
(B.8)

Let Q∗4 = (ABu)†Θ(Q̃∗1)C†y where Θ(Q̃∗1) defined as in (B.3). If Q̃∗1 makes the constraint∑4
i=2

∥∥∥Ωi(Q̃1)
∥∥∥2

2
< ε2 satisfied, where Ω2(Q̃1), Ω3(Q̃1) and Ω4(Q̃1) are as defined in (B.4)
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for a negligibly small ε2 ∈ R+, then an internally stabilizing controller can be given as

K = −Q∗4(I − P22Q
∗
4)−1.

Proof. Proof follows corollary 3.

Problem defined in (B.8) is an unconstrained H2 problem which can be solved us-

ing standard techniques to find the solution. If the results of the problem (B.8) satisfies∑4
i=2

∥∥∥Ωi(Q̃1)
∥∥∥2

2
< ε2 for a negligibly small ε2, than one can attain a controller.

B.3.2 Alternative Controller Problem - 2

In this section, we will propose another relaxed method to find stabilizing controller to

solve the control synthesis problem in one step by avoiding vectorization method.

Corollary 14. Let the plant be as given in (2.11). Let Φ(Q̄) be defined as follows

Φ(Q̄) =

z−1A− I 0

0 Q4

−
z−1A− I z−1ABu

0 I

 Q̄
z−1A− I 0

z−1Cy I


There exists an internally stabilizing controller, K = −Q4(I−P22Q4)−1, if and only if there

exists Q̄ :=

Q1 Q2

Q3 Q4

 which makes the objective of following problem zero.

min
Q̄

∥∥Φ(Q̄)
∥∥2

2

s.t. Q̄ ∈ RH∞.
(B.9)

Proof. There exists a controller if and only if there exists a feasible Q̄ ∈ RH∞ which satisfies

the equality constraints given in (3.4) according to lemma 2. Multiplying (3.4a) from left

with

z−1A− I

z−1Cy

 yields

[
z−1A− I z−1ABu

]
Q̄

z−1A− I

z−1Cy

 = z−1A− I. (B.10)
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Moreover, multiplying (3.4b) from right with

[
z−1A− I z−1ABu

]
also yields equation

(B.10).

After multiplying (3.7b) with z−1Cy from right, we subtract it from (B.10) and obtain

the following

(z−1A− I)Q1(z−1A− I) + z−1ABuQ3(z−1A− I) = z−1A− I. (B.11)

Multiplying (B.11) with (z−1A − I)−1 from right brings in (3.7a). Therefore, equation

constraint pair (3.7b) and (3.7a) can be replaced with (3.7b) and (B.10).

Moreover, after multiplying (3.12c) with z−1ABu from left, we subtract it from (B.10)

and obtain the following

(z−1A− I)Q1(z−1A− I) + z−1(z−1A− I)Q2Cy = z−1A− I. (B.12)

Multiplying (B.12) with (z−1A − I)−1 from left brings in (3.12a). Therefore, equation

constraint pair (3.12c) and (3.12a) can be replaced with (3.12c) and (B.10). Therefore,

constraint set (3.12c), (3.7b), (3.7a) and (3.12a) can be equivalently solved with (3.12c),

(3.7b) and (B.10). Moreover, one can write constraint set (3.12c), (3.7b) and (B.10) as in

the following z−1A− I z−1ABu

0 I

 Q̄
z−1A− I 0

z−1Cy I

 =

z−1A− I 0

0 Q4

 (B.13)

Therefore, a feasible Q̄ ∈ RH∞ which satisfies (B.13) is a feasible solution of (3.4) which

can be equivalently found by problem B.9 if there exists any, therefore results follow lemma

2.

Problem in (B.9) is in the form H(Q4) + UQ̄V , to be able to solve the problem using

existing solution methods of H2 problem, we need also a H which does not depend on Q4.

Therefore, we propose next a relaxed problem for (B.9).
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Proposition 2. Let the plant be as given in (2.11). Let Ψ(Q̄) be defined as follows

Ψ(Q̄) =

z−1A− I 0

0 0

−
z−1A− I z−1ABu

0 ε1I

 Q̄
z−1A− I 0

z−1Cy ε1I


There exists an internally stabilizing controller, K = −Q4(I − P22Q4)−1, if there exists a

Q̄ :=

Q1 Q2

Q3 Q4

 which solves the following problem for small enough ε1 and ε2

min
Q̄

∥∥Ψ(Q̄)
∥∥2

2

s.t. Q̄ ∈ RH∞.
(B.14)

such that∥∥∥∥[I 0

]
−
[
z−1A− I z−1ABu

]
Q̄

∥∥∥∥2

2

+

∥∥∥∥∥∥∥
I

0

− Q̄
z−1A− I

z−1Cy


∥∥∥∥∥∥∥

2

2

< ε2. (B.15)

Proof. Proof follows lemma 2 and corollary 14.

Problem defined in (B.14) is an unconstrained H2 problem which can be solved using

standard techniques to find the solution. After solving problem (B.14), one need to check

if the inequality constraint given in (B.15) is satisfied. Let Q∗4 be a solution to problem

(B.14) such that (B.15) is satisfied, then one can obtain the corresponding controller as

K = −Q∗4(I − P22Q
∗
4)−1.

B.4 An Alternative Doubly Coprime Factorization of Controllers

In this section, we will provide an alternative doubly coprime factorization of K̄ bene-

fiting another stably defined plant.

Besides the stably defined congruent plant defined in (3.3a), we can obtain another

stably defined congruent plant, P̂22 as in figure B.1 and its input to output maps can be

given as follows

P̂22 =

 z−1A z−1Bu

z−1CyA z−1CyBu

 (B.16)
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Bu z−1 Cy- - f - - -
u(k) y(k)

i(k)
-

? r
- A

o(k)

Figure B.1 Block diagram of P̂22

Then, feedback interconnection of plant P22 and controller K can be written as feedback

interconnection of P̂22 and K̄ = blkdiag(Inx ,K).

Next, we show an alternative doubly coprime factorization of K̄ benefiting definitions

of K̄ and P̂22.

Corollary 15. Let K be a stabilizing controller of P22 = ss(A,Bu, Cy, 0) and nx be the

order of P22. Let K̄ be defined as K̄ =

Inx 0

0 K

. Define Z = (zI − A−BuKCy) and let

the set of maps M , N , M̄ and N̄ be defined as follows

M = M̄ =

 I +AZ−1 Z−1BuK

KCyZ
−1A K(I − P22K)−1

 ,
N =

I +AZ−1 Z−1BuK

CyZ
−1A (I − P22K)−1

 , N̄ =

 I +AZ−1 Z−1Bu

KCyZ
−1A (I −KP22)−1

 .
(B.17)

Then, a doubly-coprime factorization of K̄ can be represented as K̄ = MN−1 = N̄−1M̄

satisfying

Φ =

 X̄ −Ȳ

−M̄ N̄


N Y

M X

 =

I 0

0 I

 (B.18)

with stable X, Y , X̄ and Ȳ defined as X = I, X̄ = I, Y = Ȳ =

 z−1A z−1Bu

z−1CyA z−1CyBu

.

Proof of corollary 15 is omitted due to its similarity to proof of lemma 7. In the next

corollary, we parametrize controllers with set of maps obtain in corollary 15.



www.manaraa.com

106

Corollary 16. For a given plant P22 = ss(A,Bu, Cy, 0), let P̂22 and M be defined as in

(B.16) and (B.17), respectively. Then, a controller K of the given plant can be parametrized

as

K =

[
0 Inu

]
M(I + P̂22M)−1

 0

Iny

 . (B.19)

Proof. This corollary is direct result of corollary 15 and the equality N = (I + P̂22M).

In the next corollaries, we show that K ∈ T(G,Pu,Py) is network realizable con-

troller of system P 2
22 = ss(A,B2

u, C
2
y , 0) ∈ S(G,Py,Pu) wherein A ∈ S(A(G),Px,Px),

B2
u ∈ S(A(G),Px,Pu) and C2

y ∈ S(I,Py,Px) are state-space matrices of P 2
22 and moreover,

there exists a network implementable state-space realization of K over the given network.

Corollary 17. Let A ∈ S(A(G),Px,Px), B2
u ∈ S(A(G),Px,Pu) and C2

y ∈ S(I,Py,Px)

be state-space matrices of P 2
22, i.e. P 2

22 = ss(A,B2
u, C

2
y , 0) ∈ S(G,Px,Py,Pu). Let K ∈

T(G,Pu,Py) be an output feedback controller for P 2
22. Then, there exists a network imple-

mentable state space realization of K ∈ T(G,Pu,Py) over the given network.

Proof. For a givenK ∈ T(G,Pu,Py), M given in (B.17) belongs to set Ts(G2, [Px;Pu], [Px;Py]).

According to theorem 1, there exists a network implementable state-space realization of

M ∈ Ts(G2, [Px;Pu], [Px;Py]) and let M̃ be the network implementable state-space re-

alization of M ∈ Ts(G2, [Px;Pu], [Px;Py]). Moreover, network implementable state-space

realization of P̂ 2
22 can be given as follows

˜̂
P22 = ss(0,

[
A Bu

]
,

Inx
Cy

 , 0). (B.20)

According to corollary 16, we can define the controller as in (B.19). Therefore, using network

implementable state-space realizations M̃ and
˜̂
P22, we obtain the network-implementable

controller, K̃ as

K̃ =

[
0 Inu

]
M̃(I +

˜̂
P22M̃)−1

 0

Iny

 . (B.21)
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A block diagram of network implementable controller realization in (B.21) can be given

as in figure B.2.

y +

-

[
0
Iny

]
˜̂
P22

M̃- - e - - [0 Inu
] -

u

�

6

Figure B.2 A block diagram for network realization of K.

Corollary 18. Let A ∈ S(A(G),Px,Px), B2
u ∈ S(A(G),Px,Pu) and C2

y ∈ S(I,Py,Px)

be state-space matrices of P22, i.e. P 2
22 = ss(A,B2

u, C
2
y , 0) ∈ S(G,Px,Py,Pu). Let K ∈

T(G,Pu,Py) be an output feedback controller for P 2
22. Then, K ∈ T(G,Pu,Py) is a network

realizable controller of P22.

Proof. Since, there exists a network implementable state-space realization of controller K ∈

T(G,Pu,Py) of plant P22 according to corollary 17, it follows that K is a network realizable

controller of P22.

B.5 Vectorization of Network Realizable Systems

Figure B.3 A pseudo-graph of 3 node system.

For the given pseudo-graph in figure B.3, a network realizable systemQ(z) ∈ T(G,Pu,Py)

has the following structure
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Q(z) =


w11(z) z−1w12(z) 0

z−1w21(z) w22(z) 0

z−2w31(z) z−1w32(z) w33(z)

 (B.22)

wherein wij for {i, j} ∈ {1, 2, 3} are causal systems. Sparsity and delay constraints imposed

on system Q(z) by the set T(G,Pu,Py) can be observed on (B.22). For simplicity, assume

all the subsystems wij for {i, j} ∈ {1, 2, 3} are SISO. One can give a vectorized Q as follows

[37]

vec(Q(z)) =



I 0 0 0 0 0 0

0 z−1I 0 0 0 0 0

0 0 z−2I 0 0 0 0

0 0 0 z−1I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 z−1I 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 I


︸ ︷︷ ︸

S(z)



w11(z)

w21(z)

w31(z)

w12(z)

w22(z)

w32(z)

w33(z)


︸ ︷︷ ︸

W (z)

= S(z)W (z)
(B.23)

Therefore, we can write vec(Q(z)) equivalently as S(z)W (z), where S(z) inherits all the

sparsity and delay constraints imposed by the set T(G,Pu,Py).
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APPENDIX C. NETWORK IMPLEMENTABLE STATE-SPACE

REALIZATION OF NETWORK REALIZABLE CONTROLLERS

In this chapter we first review network implementable state-space realization technique

found for stable network realizable systems, then we will show on example how to obtain

network implementable state-space realization of a given network realizable controller.

C.1 Network Implementable State-Space Realization of Stable

Networked Systems

In this section we review the method to find a network implementable state-space real-

ization of given network realizable stable system as shown in [1].

In the transfer function domain a network realizable system inherits the delay and

sparsity constraints of the given network. For instance the 6-node system given in figure,

let P be a stable system such that P (z) ∈ Ts(G,Py,Pu), then its transfer function inherits

the following structure

P (z) =



H11 z−1H12 z−3H13 z−1H14 z−2H15 0

z−2H21 H22 z−3H23 z−1H24 z−2H25 0

z−1H31 z−2H32 H33 z−2H34 z−3H35 0

z−1H41 z−2H42 z−2H43 H44 z−1H45 0

z−2H51 z−3H52 z−1H53 z−3H54 H55 0

z−3H61 z−4H62 z−2H63 z−4H64 z−1H65 H66


(C.1)

From equation (C.1), we observe that when there is a path from node-j to i with length l

(l: shortest path length), then we have Pij = z−lHij . In the case of there is no path from
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i to j then we have Pij = 0. Consider the minimal realization of Pij in the following cases

and define local states corresponding to a vertex as shown below.

� When i = j, define local state xii vertex-vi such that

Pii(z) :
xii(k + 1) = Aiixii(k) +Biiui(k)

yii(k) = Ciixii(k) +Diiui(k).

(C.2)

� When j ∈ N−i , define states xij(k) at vertex-vj

Pij(z) :
xij(k + 1) = Aiixij(k) +Bijui(k)

yij(k) = Ciixij(k)

(C.3)

� Let lij be the shortest path from vertex vj to vi such that shortest path from vj to vi

is v0
ij → v1

ij → ... → v
lij
ij , such that v0

ij = vj and v
lij
ij = vi with intermediate vertices

v1
ij , ...., v

lij−1
ij . In this case, we define states at each vertex on the path as follows:

z−1Hij(z) :
x0
ij(k + 1) = Aijx

0
ij(k) +Bijuj(k)

yij(k) = Cijx
0
ij(k)

(C.4)

Note that states x0
ij(k) are defined at vertex vj and outputs y0

ij are passed to vertex

v1
ij . At vertices vpij , p ∈ {1, ...., l − 1}, we define states xpij(k) corresponding to unit

delay systems:

z−1 :
xpij(k + 1) = yp−1

ij (k)

ypij(k) = xpij(k)

(C.5)

We denote the state vector corresponding to each vertex vi to be x̃i(k), which is formed

by appending the states xii(k), xri(k) ∀r ∈ N+
i and xpmn(k) whenever vpmn = vi (for p ∈

{0, ..., lmn − 1}), i.e. when vertex vi is a vertex on the shortest path from some vertex vn

to some other vertex va.

A network output vector ηri, for all r ∈ N+
i , is formed by appending yri(k) and ypab(k)

whenever vpmn = vi and vp+1
mn = vr (for p ∈ {0, 1, ..., lmn − 1}). Similarly, a network input

vector ζ̃(k), for all j ∈ N−i , is formed by appending yij(k) and ypmn(k) whenever vpmn = vj
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and vp+1
mn = vi (for p ∈ {0, ..., lmn − 1}). Note that the network inputs defined at vertex vi

do not affect the outputs at the same vertex vi for any time instant k.

At vertex vi, the output yi(k) is given by

yi(k) = yii +
∑
j∈N−

i

yij(k) +
∑
j:lij≥2

y
lij−1
ij (k). (C.6)

Thus, we can define n sub-systems, {P̃i}i, each with local states x̃i(k), local inputs ui(k),

local outputs yi(k), network inputs ζ̃ij(k) (for all j ∈ N−i ) and network outputs η̃ir(k) (for

all r ∈ N+
i ).

C.2 A Network Implementable State-Space Realization of Network

Realizable Controller

In this section we will demonstrate how to obtain network implementable state-space

realization of a network realizable controller given for 6-node system given in figure 2.1 by

benefiting the network implementable state-space realization method reviewed in section

C.1.

Let V be defined as in (4.2) and P̄22 be defined as in (3.3). We will obtain network

implementable state-space realization of network realizable controlller, K ∈ T(G,Pu,Py),

by obtaining network implementable state space realization of V (I + P̄22V̄ )−1 as shown

in chapter 4. As it can be seen in figure 4.1, we can do realization of V (I + P̄22V̄ )−1

by two blocks Ṽ and ˜̄P22 which are network implementable state-space realizations of V

and P̄22. A network implementable state-space realization of P̄22 can be found in (4.6).

Next, we will demonstrate how to obtain network implementable state-space realization of

V ∈ Ts(G2, [Px;Pu], [Px;Py]).

Using definition of V , let us define its sub-blocks:

V :=

V1 V2

V3 V4

 =

I +AZ−1 AZ−1BuK

KCyZ
−1 K(I − P22K)−1

 (C.7)
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For the six-node system given in figure 2.1, in z-domain each Vi for i = {1, ..., 4} has

the following form:

Vi =



V 11
i z−1V 12

i z−3V 13
i z−1V 14

i z−2V 15
i 0

z−2V 21
i V 22

i z−3V 23
i z−1V 24

i z−2V 25
i 0

z−1V 31
i z−2V 32

i V 33
i z−2V 34

i z−3V 35
i 0

z−1V 41
i z−2V 42

i z−2V 43
i V 44

i z−1V 45
i 0

z−2V 51
i z−3V 52

i z−1V 53
i z−3V 54

i V 55
i 0

z−3V 61
i z−4V 62

i z−2V 63
i z−4V 64

i z−1V 65
i V 66

i


(C.8)

where V kj
i are casual stable systems.

Let V̂ be a matrix such that its input and outputs are regrouped form of V as follows:

V̂ : =



V̂11 V̂12 V̂13 V̂14 V̂15 V̂16

V̂21 V̂22 V̂23 V̂24 V̂25 V̂26

V̂31 V̂32 V̂33 V̂34 V̂35 V̂36

V̂41 V̂42 V̂43 V̂44 V̂45 V̂46

V̂51 V̂52 V̂53 V̂54 V̂55 V̂56

V̂11 V̂12 V̂13 V̂14 V̂15 V̂16



=



V 11
1 V 11

2

V 11
3 V 11

4

 . . . z−2

V 15
1 V 15

2

V 15
3 V 15

4


0 0

0 0


...

. . .
...

...

z−2

V 51
1 V 51

2

V 51
3 V 51

4

 . . .

V 55
1 V 55

2

V 55
3 V 55

4


0 0

0 0


z−3

V 61
1 V 61

2

V 61
3 V 61

4

 . . . z−1

V 65
1 V 65

2

V 65
3 V 65

4


V 66

1 V 66
2

V 66
3 V 66

4





(C.9)

Let V̂ij(z) for {i, j} ∈ {1, 2, ..., 6} be the entries of V̂ (z) as shown in (C.9). As shown

in equation (C.9), columns of V̂ (z) includes terms, V̂ii(z) and z−kV̂ij(z) for some k ∈

{1, 2, 3, 4}. Note that z−kV̂ij is essentially the transfer function matrix mapping uj(k) to
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yi(k). System V̂ij(z) with z−1, i.e. z−1V̂ij(z), shows that messages of system V̂ij(z) goes

directly from node i to node j. On the other side, systems like z−kV̂ij(z) for k > 1 shows

that messages of system V̂ij does not directly go from node i to node j. For instance, we

have z−2V̂34(z), in this case message from node 4 to node 3 goes through node 1 (see figure

2.1).

Let Gj(z) for {1, 2..., 6} be the column matrix obtained using jth column entries of V̂ (z)

G1(z) =



V̂11(z)

z−1V̂21(z)

z−1V̂31(z)

z−1V̂41(z)

z−1V̂51(z)

z−1V̂61(z)


, G2(z) =



z−1V̂12(z)

V̂22(z)

z−1V̂32(z)

z−1V̂42(z)

z−1V̂52(z)

z−1V̂62(z)


, G3 =



z−1V̂13(z)

z−1V̂23(z)

V̂33(z)

z−1V̂43(z)

z−1V̂53(z)

z−1V̂63(z)



G4(z) =



z−1V̂14(z)

z−1V̂24(z)

z−1V̂34(z)

V̂44(z)

z−1V̂54(z)

z−1V̂64(z)


, G5(z) =



z−1V̂15(z)

z−1V̂25(z)

z−1V̂35(z)

z−1V̂45(z)

V̂55(z)

z−1V̂65(z)


, G6 =

[
V̂66(z)

]
.

Minimal state space realizations of Gj for j ∈ {1, 2, ..., 6} can be shown as

Gj(z)→

xGj (k + 1)

yGj (k)

 =

AGj BGj

CGj DGj


xGj (k)

ũj(k)

 (C.10)

and corresponding output vectors are

yG1 =

[
yT11 (y0

21)T yT31 yT41 (y0
51)T (y0

61)T
]T
,

yG2 =

[
yT12 yT22 (y0

32)T (y0
42)T (y0

52)T (y0
62)T

]T
,

yG3 =

[
(y0

13)T (y0
23)T yT33 (y0

43)T yT53 (y0
63)T

]T
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,

yG4 =

[
yT14 yT24 (y0

34)T yT44 (y0
54)T (y0

64)T
]T
,

yG5 =

[
(y0

15)T (y0
25)T (y0

35)T yT45 yT55 yT65

]T
,

yG6 =

[
(y66)T

]T
.

Moreover, for nodes 1− 5, we can write the equality yGj explicitly as

yGj =



C1
Gj

C2
Gj

C3
Gj

C4
Gj

C5
Gj

C6
Gj


xGj +



D1
Gj

D2
Gj

D3
Gj

D4
Gj

D5
Gj

D6
Gj


uGj (C.11)

We define the y0
34(k) at node 4, and its output passes to node 1 as input of unit de-

lay system. Therefore, at node 1, we define the states x1
34(k) corresponding to unit delay

systems. Similarly, other delayed systems can be defined as in the following where (v1, v2) ∈

{(3, 2), (5, 2), (6, 2), (3, 4), (5, 4), (6, 4), (4, 2), (5, 1), (6, 1), (1, 5), (3, 5), (2, 1), (2, 5), (1, 3),

(2, 3), (4, 3), (6, 3)}, (v3, v4) ∈ {(3, 5), (5, 2), (6, 2), (5, 4), (6, 4), (1, 3), (2, 3), (6, 1), (6, 3)}, and

(v5, v6) ∈ {(6, 2), (6, 4)}.

z−1 →

x1
v1,v2

(k + 1)

y1
v1,v2

(k)

 =

0 1

1 0


x1

v1,v2
(k)

y0
v1,v2

(k)


z−1 →

x2
v3,v4

(k + 1)

y2
v3,v4

(k)

 =

0 1

1 0


x2

v3,v4
(k)

y1
v3,v4

(k)


z−1 →

x3
v5,v6

(k + 1)

y3
v5,v6

(k)

 =

0 1

1 0


x3

v5,v6
(k)

y2
v6,v6

(k)


(C.12)
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By regarding the information flow in the network, state vectors corresponding to each

node can be given as in the followings

x̃1(k) =



xG1(k)

x1
32(k)

x1
52(k)

x1
62(k)

x1
34(k)

x1
54(k)

x1
64(k)

x2
35(k)

x1
42(k)



, x̃3(k) =



xG3(k)

x1
51(k)

x1
61(k)

x2
52(k)

x2
62(k)

x2
54(k)

x2
64(k)



, x̃4(k) =



xG4(k)

x2
13(k)

x1
15(k)

x1
35(k)

x1
21(k)

x2
23(k)

x1
25(k)



, x̃5(k) =



xG5(k)

x1
13(k)

x1
23(k)

x1
43(k)

x2
61(k)

x3
62(k)

x1
63(k)

x3
64(k)



x̃2(k) = xG2(k) and x̃6(k) = xG6(k).

We denote outgoing messages from node-i to node-j as η̃ji. Outgoing messages can be

given as

η̃12(k) =



y0
32(k)

y0
52(k)

y0
62(k)

y0
42(k)

y12(k)


, η̃31(k) =



y1
32(k)

y1
52(k)

y1
62(k)

y1
34(k)

y1
54(k)

y1
64(k)

y2
35(k)

y31(k)

y0
51(k)

y0
61(k)



, η̃53(k) =



y1
51(k)

y1
61(k)

y2
52(k)

y2
62(k)

y2
54(k)

y2
64(k)

y0
13(k)

y0
23(k)

y0
43(k)

y0
63(k)

y53(k)



, η̃14(k) =



y2
13(k)

y1
15(k)

y1
35(k)

y0
34(k)

y0
54(k)

y0
64(k)

y14(k)



,
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η̃24(k) =



y1
21(k)

y2
23(k)

y1
25(k)

y24(k)


, η̃41(k) =


y1

42(k)

y41(k)

y0
21(k)

 , η̃45(k) =



y1
13(k)

y1
23(k)

y1
43(k)

y0
15(k)

y0
35(k)

y0
25(k)

y45(k)



, η̃65(k) =



y2
61(k)

y3
62(k)

y1
63(k)

y3
64(k)

y65(k)


.

Furthermore, outputs at each node can be given as

ỹ1(k) = y11(k) + y12(k) + y2
13(k) + y14(k) + y1

15(k),

ỹ2(k) = y1
21(k) + y22(k) + y2

23(k) + y24(k) + y1
25(k),

ỹ3(k) = y31(k) + y1
32(k) + y33(k) + y1

34(k) + y2
35(k),

ỹ4(k) = y41(k) + y1
42(k) + y1

43(k) + y44(k) + y45(k),

ỹ5(k) = y1
51(k) + y2

52(k) + y53(k) + y2
54(k) + y55(k),

ỹ6(k) = y2
61(k) + y3

62(k) + y1
63(k) + y3

64(k) + y65(k) + y66(k).

(C.13)

Since the network G is noiseless and has zero delay, the incoming message vectors at each

vertex are given by

ζ̃31(k) = η̃31(k), ζ̃41(k) = η̃41(k), ζ̃53(k) = η̃53(k), ζ̃14(k) = η̃14(k),

ζ̃24(k) = η̃24(k), ζ̃45(k) = η̃45(k), ζ̃65(k) = η̃65(k).
(C.14)

Using equations (C.10), (C.11), (C.12), (C.13) and (C.14) the dynamics at each vertex

can be defined as a sub-system Ṽi for i = {1, ..., 6}. Subsystems Ṽ1, Ṽ2, Ṽ3, Ṽ4 and Ṽ5 can

be given as
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
x̃1(k + 1)

ỹ1(k)

η̃31(k)

η̃41(k)

 =



AG1
0 0 0 0 0 0 0 0 BG1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0

C1
G1

0 0 0 0 0 0 0 0 D1
G1

0 0 0 0 I I I 0 0 0 0 I

0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3
G1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C5
G1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6
G1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0

C4
G1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C2
G1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




x̃1(k)

ũ1(k)

ζ̃12(k)

ζ̃14(k)



(C.15)


x̃2(k + 1)

ỹ2(k)

η̃12(k)

 =



AG2 BG2 0 0 0 0

C2
G2

D2
G2

I I I I

C3
G2

0 0 0 0 0

C5
G2

0 0 0 0 0

C6
G2

0 0 0 0 0

C4
G2

0 0 0 0 0

C1
G2

0 0 0 0 0




x̃2(k)

ũ2(k)

ζ̃24(k)

 (C.16)
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
x̃3(k + 1)

ỹ1(k)

η̃53(k)

 =



AG3 0 0 0 0 0 0 BG3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0

C3
G3

0 0 0 0 0 0 D3
G3

I 0 0 I 0 0 I I 0 0

0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0

C1
G3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C2
G3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C4
G3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6
G3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C5
G3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




x̃3(k)

ũ3(k)

ζ̃31(k)



(C.17)
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

x̃4(k + 1)

ỹ4(k)

η̃14(k)

η̃24(k)


=



AG4
0 0 0 0 0 0 BG4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0

C4
G4

0 0 0 0 0 0 D4
G4

I I 0 0 0 0 0 0 I I

0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3
G4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C5
G4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C6
G4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1
G4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0

C2
G3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





x̃4(k)

ũ4(k)

ζ̃41(k)

ζ̃45(k)



(C.18)
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
x̃5(k + 1)

ỹ5(k)

η̃45(k)

η̃65(k)

 =



AG5
0 0 0 0 0 0 0 BG5

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0

C5
G5

0 0 0 0 0 0 0 D5
G5

I 0 I 0 I 0 0 0 0 0 I

0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1
G5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C2
G5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3
G5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C4
G5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0

C6
G5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




x̃5(k)

ũ5(k)

ζ̃53(k)



(C.19)

Finally, sub-system Ṽ6 can be given as

x̃6(k + 1)

ỹ6(k)

 =

AG6
BG6

0 0 0 0 0

CG6
DG6

I I I I I



x̃6(k)

ũ6(k)

ζ̃65(k)

 (C.20)

The subsystems Ṽi i ∈ {1, ..., 6} given by (C.15), (C.16), (C.17), (C.18), (C.19) and

(C.20) interacting over the interconnection (C.14) describes the networked system
˜̂
V cor-

responding to V̂ (z). Combining equations in (C.14), (C.15), (C.16), (C.17), (C.18), (C.19)

and (C.20), one can obtain state space representation of V̂ as
˜̂
V = ss(AV̂ , BV̂ , CV̂ , DV̂ ) ∈



www.manaraa.com

121

S(G,Py,Pu) such that AV̂ ∈ S(A(G),PxV̄ ,PxV̄ ), BV̂ ∈ S(I,PxV̄ ,PuV̄ ),

CV̂ ∈ S(A(G),PyV̄ ,PxV̄ ) and DV̂ ∈ S(I,PyV̄ ,PuV̄ ) where PyV̄ = (3, 3, 3, 3, 3, 3), PuV̄ =

(3, 3, 3, 3, 3, 3) and PxV̄ = (n1, n2, n3, n4, n5, n6) wherein ni is length of x̃i for i ∈ {1, ..., 6}.

Since V̂ is obtained from V by regrouping the inputs and outputs, one can obtain back

network implementable state-space realization of Ṽ from ˜̄V by re-grouping its inputs and

outputs channels. So, we can obtain network implementable state-space realization of V

as V̄ = ss(AV , BV , CV , DV ) ∈ S(G,Py,Pu) such that AV = AV̂ , BV is obtained from BV̂

by a proper row exchanges, CV is obtained from CV̂ by a proper column exchanges, and

DV is obtained from DV̂ by a proper row and column exchanges (proper row and column

exchanges are referred to row and column exchanges transforms V̂ back to V ), so we have

tf(Ṽ ) = V (z).

Using network implementable state space realizations Ṽ = ss(AV , BV , CV , DV ) and

˜̄P22 = ss(AP̄22
, BP̄22

, CP̄22
, DP̄22

) ( ˜̄P22 can be find as in (4.6)) we obtain network imple-

mentable state space realization of K̄ = blkdiag(I,K) using block diagram 4.1 and its

state-space matrices can be given as

˜̄K =


AK̄ BK̄

CK̄ DK̄


AK̄ :=

AP̄22
−BP̄22

DV CP̄22
BP̄22

CV

−BV CP̄22
AV

 ,
BK̄ :=

BP̄22
DV

BV

 ,
CK̄ :=

[
−DV CP̄22

CV

]
,

DK̄ := DV .

(C.21)
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Using K̄, we can obtain K as K =

[
0 Inu

]
K̄

 0

Iny

. Therefore, using (C.21), network

implementable state-space realization of ˜̄K can be given as

K̃ =


AK BK

CK DK


AK :=

AP̄22
−BP̄22

DV CP̄22
BP̄22

CV

−BV CP̄22
AV

 ,
BK :=

BP̄22
DV

BV


 0

Iny

 ,
CK :=

[
0 Inu

] [
−DV CP̄22

CV

]
,

DK :=

[
0 Inu

]
DV

 0

Iny

 .

(C.22)
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